精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2
2x+1
(x>0)
(1)当x1>0,x2>0且f(x1)•f(x2)=1时,求证:x1•x2≥3+2
2

(2)若数列{an}满足a1=1an>0an+1=f(an)(n∈N*)求数列{an}的通项公式.
(1)证明:∵x1>0,x2>0,f(x1)•f(x2)=1,
x12
2x1+1 
x22
2x2+1
=1,…(2分)
(x1x2)2=(2x1+1)(2x2+1)
=4x1x2+2(x1+x2)+1
4x1x2+4
x1x2
 +1

=(2
x1x2
+1)2.…(4分)
x1x2≥2
x1x2
+1

(
x1x2
-1)2≥2

x1x2
-1≥ 
2
,或
x1x2
-1≤-
2
(舍去).
x1x2
2
+1

x1x2≥(
2
+1)2=3+2
2
.…(6分)
(2)解法一:∵a1=1,an>0,an+1=f(an)=
an2
2an+1

1
an+1
=
2an+1
an2
=
2
an
+
1
an2
=(1+
1
an
)2-1

1+
1
an+1
=(1+
1
an
)
2
.…(8分)
lg(1+
1
an+1
)=lg(1+
1
an
)2
=2lg(1+
1
an
)
.…(10分)
∴数列{lg(1+
1
an
)}
是首项为lg(1+
1
a1
)=lg2,公比为2的等比数列.
lg(1+
1
an
)=2n-1•lg2=lg22n-1
.…(12分)
1+
1
an
=22n-1

an=
1
22n-1-1
.…(14分)
解法二:∵a1=1,an>0,an+1=f(an)=
an2
2an+1

an+1
1+an+1
=
an2
2an+1
1+
an2
2an+1
=
an2
an2+2an+1
=(
an
1+an
)
2
,…(8分)
lg(
an+1
1+an+1
)
=lg(
an
1+an
)2
=2lg(
an
1+an
)
.…(10分)
∴数列{lg(
a n
1+an
)}
是首项为lg(
a1
1+a1
)=lg
1
2
,公比为2的等比数列.
lg(
an
1+an
)=2n-1•lg
1
2
=lg(
1
2
)2n-1
,…(12分)
an
1+an
=(
1
2
)
2n-1

an=
1
22n-1-1
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案