精英家教网 > 高中数学 > 题目详情
7.设i是虚数单位,复数$\frac{{-2\sqrt{3}+i}}{{1+2\sqrt{3}i}}$=(  )
A.-1B.1C.-iD.i

分析 直接利用复数代数形式的乘除运算化简求值.

解答 解:$\frac{{-2\sqrt{3}+i}}{{1+2\sqrt{3}i}}$=$\frac{(-2\sqrt{3}+i)(1-2\sqrt{3}i)}{(1+2\sqrt{3}i)(1-2\sqrt{3}i)}$=$\frac{13i}{13}=i$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x-2|+1,g(x)=loga(x+1)(a>0,且a≠1),若函数f(x)-g(x)有两个不相同的零点,则实数a的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=4和点M(1,a).
(1)若过点M有且只有一条直线与圆O相切,求正数a的值,并求出切线方程;
(2)若a=$\sqrt{2}$,过点M的圆的两条弦AC,BD互相垂直.
①求四边形ABCD面积的最大值;②求|AC|+|BD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线L的直角坐标方程为x+y=a,且点A在直线上L.
(1)求a的值;
(2)圆C的参数方程为$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}$,(α为参数),试判断直线L与圆C的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}$x2-ax-a,x∈R,其中a>0.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)讨论函数f(x)在区间(-2,0)上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)满足f(2)=1且f(x+3)=2f(x),则f(2015)=(  )
A.2670B.2671C.2672D.2673

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn为数列{an}的前n项和,且a1=1,nan+1=(n+2)Sn+n(n+1),n∈N*
(Ⅰ)证明:数列{${\frac{S_n}{n}$+1}为等比数列;
(Ⅱ)求 Tn=S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}满足a3=5,a10=-9,Sn是数列{an}的前n项和,则使得Sn最大的序号n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的极坐标方程为ρcosθ-$\sqrt{3}$ρsinθ=5,圆C的参数方程为$\left\{\begin{array}{l}{x=5+2cosα}\\{y=4+2sinα}\end{array}\right.$(α为参数,α∈[0,2π]).
(1)求直线l和圆C的直角坐标方程;
(2)判断直线l与圆C的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案