精英家教网 > 高中数学 > 题目详情
2.已知正四面体的顶点都在表面积为36π的球面上,则此正四面体体积为8$\sqrt{3}$.

分析 画出几何图形,求出球的半径,可得正方体的棱长为2$\sqrt{3}$,正方体的体积为24$\sqrt{3}$,即可求得正四面体体积.

解答 解:正四面体内接于球,则相应的一个正方体内接于球
设正方体为ABCD-A1B1C1D1,则正四面体为ACB1D1
设球半径为R,则4πR2=36π,∴R=3
∴AC1=6,∴正方体的棱长为2$\sqrt{3}$,正方体的体积为24$\sqrt{3}$,
∴此正四面体体积为24$\sqrt{3}$-4×$\frac{1}{3}$×$\frac{1}{2}$×2$\sqrt{3}$×2$\sqrt{3}$×2$\sqrt{3}$=8$\sqrt{3}$,
故答案为:8$\sqrt{3}$.

点评 本题考查正四面体与正方体的关系,在几何解题中,往往相互联系,本题中采用转化思想,把正四面体的棱长与正方体的棱长,外接球的直径相结合是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知i为虚数单位,复数z1=3-ai,z2=1+2i,若$\frac{{z}_{1}}{{z}_{2}}$复平面内对应的点在第四象限,则实数a的取值范围为$-6<a<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从集合A={1,2,3},B={4,5,6},C={7,8,9}中各取一个数,组成无重复数字的三位数的个数是162.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-1,则f(1)=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙、丙、丁4个足球队举行单循环赛,列出:
(1)所有各场比赛的双方;
(2)所有冠亚军的可能情况(冠亚军不能并列).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为促进某品牌彩电的销售,厂家设计了如下两套降价方案:
方案一:先降x%,再降x%;
方案二:一次性降价2x%(x>0).
问那套方案降价幅度大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,其中e是自然对数的底数.
(1)判断函数y=f(x)在(0,$\frac{π}{2}$)内的零点的个数,并说明理由;
(2)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$],使得f(x1)+g(x2)≥m成立,试求实数m的取值范围;
(3)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求与椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$共焦点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{|OA|}$=1,$\overrightarrow{|OB|}$=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$-$\frac{1}{4}\overrightarrow{OB}$,则$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案