精英家教网 > 高中数学 > 题目详情
17.已知A、B分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,离心率e=$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

分析 (1)由抛物线y2=4x,求得焦点F(1,0),即c=1,由e=$\frac{c}{a}$=$\frac{1}{2}$,求得a,由b2=a2-c2,即可求得椭圆C的方程;
(2)由题意设AP的方程为y=k(x+2)(k≠0),代入椭圆方程,由韦达定理求得P点坐标,QF⊥AP,QF斜率,与AP联立,求得Q点坐标,即可求得kBQ=kPQ,即可证明Q、P、B三点共线.

解答 解:(1)抛物线的焦点F(1,0),即c=1,
∵e=$\frac{c}{a}$=$\frac{1}{2}$,
∴a=2,
∴b2=a2-c2=3,
∴椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$…(4分)
(2)由(1)知直线l的方程为x=-2,
∵点P异于A,B,
∴直线AP的斜率存在且不为0,
设AP的方程为y=k(x+2)(k≠0),
联立$\left\{\begin{array}{l}{y=k(x+2)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得(3+4k2)x2+16k2x+16k2-12=0,
∴${x_P}+{x_A}=\frac{{-16{k^2}}}{{3+4{k^2}}}$,
∴${x_P}=\frac{{6-8{k^2}}}{{3+4{k^2}}}$,${y_P}=\frac{12k}{{3+4{k^2}}}$.
又∵QF⊥AP,kQF=-$\frac{1}{k}$,
∴直线QF的方程为$y=-\frac{1}{k}(x-1)$,
联立$\left\{\begin{array}{l}{y=k(x+2)}\\{y=-\frac{1}{k}(x-1)}\end{array}\right.$,解得交点$Q(-2,\frac{3}{k})$,${k_{PQ}}=\frac{{\frac{12k}{{3+4{k^2}}}-\frac{3}{k}}}{{\frac{{6-8{k^2}}}{{3+4{k^2}}}+2}}=-\frac{3}{4k}$,${k_{BQ}}=\frac{{\frac{3}{k}-0}}{-2-2}=-\frac{3}{4k}$,
即kBQ=kPQ,有公共点Q,所以Q,P,B三点共线…(12分)

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、相互垂直的直线斜率之间的关系、三点共线与斜率的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设平面α与平面β交于直线m,直线a?α,直线b?β,且b⊥m,则下列可以作为推出a⊥b的条件的有
①a⊥m;②α⊥β;③a∥m;④α∥β(  )
A.①③④B.②③④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各组函数与函数f(x)=x表示同一函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$B.f(x)=$\root{3}{{x}^{3}}$C.f(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求值:sin$\frac{13π}{4}$•cos$\frac{43π}{6}$+cos(-$\frac{π}{6}$)•sin$\frac{5π}{4}$+tan$\frac{3π}{4}$;
(2)已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=$\sqrt{2}$.
(1)求证:BD⊥平面ACC1A1
(2)求异面直线A1C1与BD所成的角.
(3)求三棱锥D1-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=asinωx+bcosωx(ω>0,a<0)的最小正周期为π,$(-\frac{π}{6},0)$是函数f(x)图象的一个对称中心,且曲线y=f(x)在该点处切线的斜率为-8.
(1)求a,b,ω的值;
(2)若角α,β的终边不共线,且f(α)=f(β),求tan(α+β)的值;
(3)若函数y=g(x)的图象与函数f(x)的图象关于直线x=-$\frac{π}{24}$对称,判断:曲线y=g(x)上是否存在与直线2x+19y+c=0(c为常数)垂直的切线?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.PA垂直于⊙O所在平面,B在⊙O上,AC是直径,AE⊥BP于E点
(1)求证:AE⊥面PBC;
(2)若PA=AB=BC=6,求点B到平面AEO的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“x=2”是“x2+2x-8=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x≤-1或x≥5},集合B={x|2a≤x≤a+2}.若A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案