精英家教网 > 高中数学 > 题目详情
12.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=$\sqrt{2}$.
(1)求证:BD⊥平面ACC1A1
(2)求异面直线A1C1与BD所成的角.
(3)求三棱锥D1-ABD的体积.

分析 (1)由AC⊥BD,AA1⊥BD即可得出BD⊥平面ACC1A1
(2)由BD⊥平面ACC1A1得出BD⊥A1C1,故异面直线A1C1与BD所成的角为90°;
(3)直接代入棱锥的体积公式计算.

解答 证明:(1)∵AB=AD,AB⊥AD,
∴四边形ABCD是正方形,∴BD⊥AC.
∵AA1⊥平面ABCD,BD?平面ABCD,
∴AA1⊥BD,
又AC?平面ACC1A1,AA1?平面ACC1A1
∴BD⊥平面ACC1A1
解:(2)BD⊥平面ACC1A1,A1C1?平面ACC1A1
∴BD⊥A1C1
∴异面直线A1C1与BD所成的角为90°.
(3)V${\;}_{{D}_{1}-ABD}$=$\frac{1}{3}{S}_{△ABD}•D{D}_{1}$=$\frac{1}{3}×\frac{1}{2}×1×1×\sqrt{2}$=$\frac{\sqrt{2}}{6}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)={(cosx+sinx)^2}-2sinxcos(\frac{π}{2}-x)$
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的最大值及f(x)取最大值时x的集合;
(Ⅲ)求函数f(x)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,向量$\overrightarrow{AB}$与$\overrightarrow{OM}$是共线向量.
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.“若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a⊥\overrightarrow b$”的否命题是“若$\overrightarrow a•\overrightarrow b≠0$,则$\overrightarrow a⊥\overrightarrow b$”
B.命题“对?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得$x_0^2+1≤0$”
C.?m∈R,使函数f(x)=x2+mx(x∈R)是奇函数
D.设p,q是简单命题,若p∨q是真命题,则p∧q也是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC中,角A,B,C,所对的边分别是a,b,c,其中b=2,cosA=$\frac{1}{3}$.
(1)若a=3,求边c;
(2)若$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,且|$\overrightarrow{AD}$|=$\frac{4\sqrt{2}}{3}$,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A、B分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,离心率e=$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a+b=1,b>0,则$\frac{1}{2|a|}+\frac{|a|}{b}$的最小值为(  )
A.$\sqrt{2}+\frac{1}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,函数f(x)的图象为折线ACB,则f(log4$\frac{1}{2}$)+f(log84)=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:对?x∈R,sinx+cosx<m恒成立,命题q:已知f(x)=2-$\frac{1}{x}$(x>0),存在实数a,b,使定义域为(a,b)时,值域为(ma,mb)
(1)命题p为真,求m的范围;
(2)命题q为真,求m的范围;
(3)若p∧q为假,p∨q为真,求m的范围.

查看答案和解析>>

同步练习册答案