精英家教网 > 高中数学 > 题目详情
5.(1)求值:sin$\frac{13π}{4}$•cos$\frac{43π}{6}$+cos(-$\frac{π}{6}$)•sin$\frac{5π}{4}$+tan$\frac{3π}{4}$;
(2)已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,求sinα的值.

分析 (1)利用诱导公式化简求解即可.
(2)利用同角三角函数基本关系式化简求解即可.

解答 解:(1)sin$\frac{13π}{4}$•cos$\frac{43π}{6}$+cos(-$\frac{π}{6}$)•sin$\frac{5π}{4}$+tan$\frac{3π}{4}$
=sin$\frac{3π}{4}$•cos$\frac{π}{6}$-cos$\frac{π}{6}$•sin$\frac{π}{4}$-tan$\frac{π}{4}$
=-1;
(2)已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,可得cosα=$\frac{3}{5}$,
sinα=$±\sqrt{1-co{s}^{2}α}$=$±\frac{4}{5}$.

点评 本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求函数$y=\frac{1}{2}sin(\frac{2}{3}x-\frac{π}{4})$的最大值和最小值及取得最大值最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)为偶函数,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+…+f(2015)等于(  )
A.-1B.0C.-1003D.1003

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{5}}}{5}t\\ y=\frac{{2\sqrt{5}}}{5}t\end{array}\right.$(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=$\frac{8cosθ}{{{{sin}^2}θ}}$.
(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(2)若直线l与曲线C交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.“若$\overrightarrow a•\overrightarrow b=0$,则$\overrightarrow a⊥\overrightarrow b$”的否命题是“若$\overrightarrow a•\overrightarrow b≠0$,则$\overrightarrow a⊥\overrightarrow b$”
B.命题“对?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得$x_0^2+1≤0$”
C.?m∈R,使函数f(x)=x2+mx(x∈R)是奇函数
D.设p,q是简单命题,若p∨q是真命题,则p∧q也是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A-BCD的外接球的体积为(  )
A.$\frac{125}{12}$πB.$\frac{125}{9}$πC.$\frac{125}{6}$πD.$\frac{125}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A、B分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,离心率e=$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点为F1(-1,0),且椭圆上的点到焦点的距离的最小值为$\sqrt{2}-1$.
(1)求椭圆C1的方程;
(2)设直线l过点$({0,\sqrt{2}})$且与椭圆C1相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的圆锥曲线的标准方程并求出其离心率.
(1)焦点在x轴上,长轴长是10,短轴长8的椭圆方程;
(2)与椭圆$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦点,且过点$(\sqrt{15},4)$的双曲线方程.

查看答案和解析>>

同步练习册答案