| A. | -1 | B. | 0 | C. | -1003 | D. | 1003 |
分析 根据题意:函数f(x)为偶函数,若将f(x)的图象向右平移一个单位又得到一个奇函数,可求出f(x)是一个周期为4的函数.因为f(2)=-1,可以求f(0)=f(2)=f(4)=-1,当x=-1时,f(-1+2)=-f(-1),即f(1)=-f(1),可求f(1)=0,∵f(3)=-f(1)=0,∴f(1)=0,f(2)=-1,f(3)=0,f(4)=-1,不难发现f(1)+f(2)+f(3)+f(4)=0,即可求.
解答 解:∵将f(x)的图象向右平移一个单位得到f(x-1),得到一个奇函数,
∴f(-x-1)=-f(x-1),
∵f(x)为偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函数的周期是4.
当x=-1时,f(-1+2)=-f(-1),即f(1)=-f(1),可求f(1)=0
利用条件可以推得:f(-1)=f(1)=0,
f(2)=-f(0)=-1,
f(3)=f(4-1)=0,
f(4)=f(0)=1,
所以在一个周期中f(1)+f(2)+f(3)+f(4)=0,
∴f(1)+f(2)+…+f(2015)
=503×[f(1)+f(2)+f(3)+f(4)]+f(2013)+f(2014+(2015)=0-1+0=-1,
故选:A.
点评 本题主要考查了函数的性质的运用和周期函数的理解,周期的求法会寻求数值之间的关系.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①③④ | B. | ②③④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{8}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\root{3}{{x}^{3}}$ | C. | f(x)=($\sqrt{x}$)2 | D. | f(x)=$\frac{{x}^{2}}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com