精英家教网 > 高中数学 > 题目详情
6.“x=2”是“x2+2x-8=0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 求出方程的根,根据集合的包含关系判断即可.

解答 解:解x2+2x-8=0,得:x=2或x=-4,
故“x=2”是“x2+2x-8=0”的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)为偶函数,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+…+f(2015)等于(  )
A.-1B.0C.-1003D.1003

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A、B分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右顶点,离心率e=$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点为F1(-1,0),且椭圆上的点到焦点的距离的最小值为$\sqrt{2}-1$.
(1)求椭圆C1的方程;
(2)设直线l过点$({0,\sqrt{2}})$且与椭圆C1相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,函数f(x)的图象为折线ACB,则f(log4$\frac{1}{2}$)+f(log84)=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在矩形ABCD中,$AB=\frac{3}{2}$,BC=2,沿BD将矩形ABCD折叠,连结AC,所得三棱锥A-BCD的正视图和俯视图如图所示,则三棱锥A-BCD的体积为(  )
A.$\frac{6}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设D为△ABC所在平面内一点,$\overrightarrow{BC}=3\overrightarrow{CD}$,则$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则m和n的值分别为$m=-\frac{1}{3},n=\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的圆锥曲线的标准方程并求出其离心率.
(1)焦点在x轴上,长轴长是10,短轴长8的椭圆方程;
(2)与椭圆$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦点,且过点$(\sqrt{15},4)$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列推理合理的是(  )
A.f(x)是增函数,则f′(x)>0
B.因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)
C.α,β是锐角△ABC的两个内角,则sin α>cos β
D.A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形

查看答案和解析>>

同步练习册答案