【题目】已知函数f(x)=x4lnx﹣a(x4﹣1),a∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)f(x)的极小值为φ(a),当a>0时,求证: .(e=2.71828…为自然对数的底)
【答案】
(1)解:f'(x)=4x3lnx+x3﹣4ax3.
则f'(1)=1﹣4a.又f(1)=0,
所以,曲线y=f(x)在点(1,f(1))处的切线方程为y=(1﹣4a)(x﹣1).
(2)解:由(1)得f'(x)=x3(4lnx+1﹣4a).
①当 时,因为y=4lnx+1﹣4a为增函数,所以当x≥1时,4lnx+1﹣4a≥4ln1+1﹣4a=1﹣4a>0,
因此f'(x)≥0.
当且仅当 ,且x=1时等号成立,
所以f(x)在(1,+∞)上为增函数.
因此,当x≥1时,f(x)≥f(1)=0.
所以, 满足题意.
②当 时,由f'(x)=x3(4lnx+1﹣4a)=0,得 ,
解得 .
因为 ,所以 ,所以 .
当 时,f'(x)<0,因此f(x)在 上为减函数.
所以当 时,f(x)<f(1)=0,不合题意.
综上所述,实数a的取值范围是 .
(3)解:由f'(x)=x3(4lnx+1﹣4a)=0,得 , .
当 时,f'(x)<0,f(x)为减函数;当 时,f'(x)>0,f(x)为增函数.
所以f(x)的极小值 =
由φ'(a)=1﹣e4a﹣1=0,得 .
当 时,φ'(a)>0,φ(a)为增函数;当 时,φ'(a)<0,φ(a)为减函数.
所以 .
= = .
下证:a>0时, .
,
∴ ,
∴ ,
∴ .
令 ,则 .
当 时,r'(a)<0,r(a)为减函数;当 时,r'(a)>0,r(a)为增函数.所以 ,即 .
所以 ,即 .所以 .
综上所述,要证的不等式成立.
【解析】(1)求出导函数,利用导函数的概念求切线的斜率,点斜式写出方程即可;(2)f(x)≥0恒成立,只需求出f(x)的最小值大于等于零即可,求出导函数,对参数a分类讨论,讨论是否满足题意;(3)根据导函数求出函数的极小值φ(a),对极小值进行求导,利用导函数得出极小值的最大值等于零,右右不等式得证,再利用构造函数的方法,通过导函数证明左式成立.
科目:高中数学 来源: 题型:
【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世界卫生组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2016年全年每天的PM2.5监测数据中随机抽取6天的数据作为样本,监测值茎叶图(十位为茎,个位为叶)如图所示,若从这6天的数据中随机抽出2天,
(1)求恰有一天空气质量超标的概率;
(2)求至多有一天空气质量超标的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱柱ABCD﹣A1B1C1D1的侧棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E为A1C的中点
(1)求证:D1E∥平面BB1C1C;
(2)求证:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)讨论f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)满足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)时,f(x)=log2 ,则y=f(x)在(1,2)内是( )
A.单调增函数,且f(x)<0
B.单调减函数,且f(x)<0
C.单调增函数,且f(x)>0
D.单调增函数,且f(x)>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f.
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图象在点处的切线方程;
(3)若不等式恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣ |,其在区间[0,1]上单调递增,则a的取值范围为( )
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com