精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)若,试判断函数的零点个数;

(2)若函数上为增函数,求整数的最大值.

(可能要用到的数据:

【答案】(1)函数上的零点有且只有一个(2)整数的最大值为6

【解析】试题分析: 求导,由恒成立,则上为增函数,由 ,可以证明上的零点个数

已知函数为增函数,则其导函数在其定义区间上恒大于等于零,可以求得所满足的不等式,要使其恒成立则必须,再利用求导,求得函数的的最小值的取值范围,即可求得整数的最大值

解析:(1)因为,易知上为增函数,则,故函数上为增函数,又 ,所以函数上的零点有且只有一个.

(2)因为,由题意上恒成立,因为显然成立,故只需要上恒成立.

,则

因为

由(1)知上为增函数,

故函数有唯一的零点记为.

则当 为减函数,

则当 为增函数,

故当时, 有最小值

有最小值

因为,则有最小值大约在6.17~6.4之间,故整数的最大值为6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.若曲线在点处的切线方程为

为自然对数的底数).

1)求函数的单调区间;

2若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,且处的切线斜率为.

(1)的值,并讨论上的单调性;

(2)设函数 ,其中,若对任意的总存在,使得成立,求的取值范围

3)已知函数,试判断内零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=emx+x2﹣mx(m∈R).
(1)当m=1时,求函数f(x)的单调区间;
(2)若m<0,且曲线y=f(x)在点(1,f(1))处的切线与直线x+(e+1)y=0垂直.
(i)当x>0时,试比较f(x)与f(﹣x)的大小;
(ii)若对任意x1 , x2(x1≠x2),且f(x1)=f(x2),证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的图象向左平移 个单位,得到的函数图象的对称中心与f(x)图象的对称中心重合,则ω的最小值是(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,圆C的方程为 (θ为参数).以坐标原点O为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.

(Ⅰ)当时,判断直线的关系;

(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x4lnx﹣a(x4﹣1),a∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)f(x)的极小值为φ(a),当a>0时,求证: .(e=2.71828…为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x2-11x+18<0},B={x|-2≤x≤5}.

(1)求ABB∪(UA);

(2)已知集合C={x|axa+2},若C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为aEPC的中点.

(Ⅰ)求证:PA∥平面BDE

(Ⅱ)平面PAC⊥平面BDE

(Ⅲ)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案