【题目】已知函数
.
(1)解关于
的不等式
;
(2)若对于任意
,
恒成立,求
的取值范围.
【答案】(1)见解析(2)![]()
【解析】
(1)通过讨论
的范围,求出不等式的解集即可;
(2)将不等式恒成立转化为
,
,求出函数的最小值即可.
(1)由不等式
,
当
时,则
,此时不等式的解集为
,
当
时,则
,此时不等式的解集为
,
当
时,则
,此时不等式的解集为
,
当
时,则
,此时不等式的解集为
,
当
时,则
,此时不等式的解集为
,
当
时,则
,此时不等式的解集为
,
综上,当
时,不等式的解集为
;当
时,不等式的解集为
;当
时,不等式的解集为
;当
时,不等式的解集为
;当
时,不等式的解集为
;当
时,不等式的解集为
.
(2)由题意,对任意
,
恒成立,
即
对任意
恒成立,
分离参数得
对任意
恒成立,
所以
,
,
因
,当且仅当
,即
时取等号,
所以
,又
,
故实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知i为虚数单位,a为实数,复数z=(1﹣2i)(a+i)在复平面内对应的点为M,则
“”是“点M在第四象限”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,设点集
,
令
.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生参加4门学科的学业水平测试,每门得
等级的概率都是
,该学生各学科等级成绩彼此独立.规定:有一门学科获
等级加1分,有两门学科获
等级加2分,有三门学科获
等级加3分,四门学科全获
等级则加5分,记
表示该生的加分数,
表示该生获
等级的学科门数与未获
等级学科门数的差的绝对值.
(1)求
的数学期望;
(2)求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点
,
,动点
满足直线
与
的斜率之积为
.记点
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点
的横、纵坐标分别为第
名工人上午的工作时间和加工的零件数,点
的横、纵坐标分别为第
名工人下午的工作时间和加工的零件数,
.记
为第
名工人在这一天中加工的零件总数,记
为第
名工人在这一天中平均加工的零件数,则
,
,
中的最大值与
,
,
中的最大值分别是( )
![]()
A.
,
B.
,![]()
C.
,
D.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB为地面,CD,CE为路灯灯杆,CD⊥AB,∠DCE=
,在E处安装路灯,且路灯的照明张角∠MEN=
.已知CD=4m,CE=2m.
![]()
(1)当M,D重合时,求路灯在路面的照明宽度MN;
(2)求此路灯在路面上的照明宽度MN的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com