精英家教网 > 高中数学 > 题目详情
20.平行向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(sinθ,cosθ),且$\overrightarrow{a}∥\overrightarrow{b}$,则cos2θ=$\frac{7}{25}$.

分析 根据平面向量共线定理的坐标表示,列出方程求出tanθ的值,再利用倍角关系与同角的三角函数关系,即可求出cos2θ的值.

解答 解:∵向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(sinθ,cosθ),且$\overrightarrow{a}∥\overrightarrow{b}$,
∴3cosθ-4sinθ=0,
∴tanθ=$\frac{3}{4}$;
∴cos2θ=cos2θ-sin2θ
=$\frac{{cos}^{2}θ{-sin}^{2}θ}{{sin}^{2}θ{+cos}^{2}θ}$
=$\frac{1{-tan}^{2}θ}{1{+tan}^{2}θ}$
=$\frac{1{-(\frac{3}{4})}^{2}}{1{+(\frac{3}{4})}^{2}}$
=$\frac{7}{25}$.
故答案为:$\frac{7}{25}$.

点评 本题考查了平面向量共线定理的坐标表示以及倍角关系与同角的三角函数关系的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的前n项和为Sn,若a2=12,a3•a5=4,则下列说法正确的是(  )
A.{an}是单调递减数列B.{Sn}是单调递减数列
C.{a2n}是单调递减数列D.{S2n}是单调递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知实数x,y满足(x-2)2+y2=9,求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≤1}\\{3x-y≥0}\\{y≥0}\end{array}\right.$,则|3x-4y-10|的最大值为$\frac{49}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面直角坐标系xOy中,向量$\overrightarrow{α}$=(2,1),$\overrightarrow{β}$=(3,λ)(λ>0),若(2$\overrightarrow{α}-\overrightarrow{β}$)$⊥\overrightarrow{β}$,记<$\overrightarrow{α},\overrightarrow{β}$>=θ,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.画出下列各不等式组所表示的平面区域.
(1)$\left\{\begin{array}{l}{3x-y+6>0}\\{2x+3y-1≥0}\\{2x-4<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{1<x+2y≤4}\\{-2≤2x-y≤-1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=Asin(ωx+φ)(ω>0,A>0,φ为锐角),在同一周期内,当x=$\frac{π}{12}$时,取得最大值y=2,当x=$\frac{7π}{12}$时,取得最小值y=-2,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点A(3,-5),B(-2,2),则线段AB间的距离是$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且b2+c2=a2+bc
(1)求A;
(2)若$a=\sqrt{3}$,b+c=3,求△ABC的面积.

查看答案和解析>>

同步练习册答案