精英家教网 > 高中数学 > 题目详情

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

(1);(2)存在,.

解析试题分析:本题考查空间两条直线的位置关系、异面直线所成的角、直线与平面垂直和平行等基础知识,考查用空间向量解决立体几何中的问题,考查空间想象能力、运算能力和推理论证能力.第一问,先用三角形中位线,证,所以利用线面平行的判定定理,得出平面,同理:平面,把的夹角转化为的夹角,利用面面平行,转化到平面的距离为到平面的距离,易得出距离为1,最后求转化后的;第二问,由已知建立空间直角坐标系,写出各点坐标,用反证法,先假设存在,假设,求出向量坐标,用假设成立的角度,列出夹角公式,解出,如果有解即存在,否则不存在,并可以求出的坐标及.
试题解析:(1)因为分别为的中点,所以.又平面平面,所以平面,同理:平面.
试题解析:(1)∵,∴平面.同理:,∴平面,因为分别为的中点,所以平面.

同理:平面,且
的夹角等于的夹角(设为
易求.     4分
∵平面平面,∴到平面的距离即到平面的距离,过的垂线,垂足为,则到平面的距离.
,     7分
(2)假设在线段存在一点,使直线.取的中点,连,设
,    

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

三棱锥P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)证明:平面PAB⊥平面PBC;
(2)若PA=,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(1)若点在线段上,问:无论的何处,是否都有?请证明你的结论;
(2)求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是⊙的一条切线,切点为都是⊙的割线,已知

(1)证明:
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直角梯形所在的平面垂直于平面

(Ⅰ)点是直线中点,证明平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD^底面ABCD,PD=DC,点E是PC的中点,作EF^PB交PB于点F,

(1)求证:PA//平面EDB;
(2)求证:PB^平面EFD;
(3)求二面角C-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案