如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ) 详见解析;(Ⅲ) 直线与平面所成角的正弦值为.
解析试题分析:(I)利用两平面垂直的性质定理,证明BC平面AEC,再根据线面垂直的性质定理证明AEBC,根据勾股定理证明AEEC,利用线面垂直的判定定理证明AE平面BCEF;(II)三棱锥体积利用体积转换为以E为顶点,为底面的椎体体积求得.等体积转化,是立体几何经常运用的一种方法,高考也考过.
试题解析:(Ⅰ)证明:设为的中点,连接,则,∵,,,∴四边形为正方形,∵为的中点,∴为的交点,∵, ,
∵,∴,,在三角形中,,∴,∵,∴平面;
(Ⅱ)方法1:连接,∵为的中点,为中点,∴,∵平面,平面,∴平面.方法2:由(Ⅰ)知平面,又,所以过分别做的平行线,以它们做轴,以为轴建立如图所示的空间直角坐标系,由已知得:,,,,,,则,,,.∴∴∵平面,平面,∴平面;
(Ⅲ) 设平面的法向量为,直线与平面
科目:高中数学 来源: 题型:解答题
(如图1)在平面四边形中,为中点,,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点,
(1)求平面和平面所成二面角的大小,
(2)求证:平面
(3)当的长度变化时,求异面直线PC与AD所成角的可能范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com