精英家教网 > 高中数学 > 题目详情

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)欲证线面垂直,先考察线线垂直,易知,所以平面;(Ⅱ)线面平行,先构造线线平行,根据中点,易想到构造三角形中位线,连接,设,则可达到目的.

试题解析:(Ⅰ)因为是正三角形,而点的中点,所以     3分
又三棱柱是正三棱柱,所以,所以,所以平面;            7分
(Ⅱ)连接,设,则的中点,连接,由的中点,
   11分  
,且,所以平面.   14分
考点:直线与平面平行的判定、直线与平面垂直的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是⊙的一条切线,切点为都是⊙的割线,已知

(1)证明:
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.

(1)求证:平面PAC⊥平面PBC;(6分)
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点,的中点.

(1)求几何体的体积;
(2)求证:为等腰直角三角形;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥中,底面为平行四边形,侧面底面.已知

(Ⅰ)证明
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,

(I)若的中点,求证:平面平面
(II)若为线段上一点,且二面角的大小为,试确定的位置.

查看答案和解析>>

同步练习册答案