精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,

(I)若的中点,求证:平面平面
(II)若为线段上一点,且二面角的大小为,试确定的位置.

(I)略;(II)

解析试题分析:(I)可以转为证线面垂直或利用空间向量证明面面垂直;(II)可利用的面积求也可利用空间向量求
试题解析:方法一:(I)证明:∵,∴.        
又由直三棱柱的性质知, 
平面,∴,            ①
的中点,可知
,即,            ②
                                ③
由①②③可知平面, 
平面,故平面平面.  
(II)解:由(I)可知平面,在平面内过,交或其延长线于,连接,∴为二面角的平面角,   
.由知,,设,则.
的面积为,∴.  
解得,即.

方法二:(I)证明:如图,以为坐标原点,所在的直线分别为轴建立空间直角坐标系,则
           
,得;         
同理可证,得.         
平面.             

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.

(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面
⑵ 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,六棱锥的底面是边长为1的正六边形,底面
(Ⅰ)求证:平面平面
(Ⅱ)若直线PC与平面PDE所成角为,求三棱锥高的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△是等边三角形, 分别是的中点,将△沿折叠到的位置,使得.
   
(1)求证:平面平面
(2)求证:平面.

查看答案和解析>>

同步练习册答案