精英家教网 > 高中数学 > 题目详情
6.平面内一动点M,到两定点F1(-3,0),F2(3,0)的距离之和等于10.
(1)求动点M的轨迹方程;    
(2)判断点$N(3,\frac{16}{5})$是否在曲线上.

分析 (1)由题意可知:椭圆的焦点在x轴上,设椭圆方程,根据椭圆的定义,可知a和c,则b2=a2-c2,即可求得动点M的轨迹方程;
(2)将N点代入椭圆方程,验证是否满足.

解答 解:(1)由椭圆的定义可知:椭圆的焦点在x轴上,设椭圆的方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
由2a=10,a=5,c=3,
b2=a2-c2=16,
∴椭圆的标准方程:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$;
(2)由$\frac{9}{25}+\frac{1{6}^{2}}{25×16}=1$,故点$N(3,\frac{16}{5})$在曲线上.

点评 本题考查椭圆的定义及方程的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若半径为2cm的扇形面积为8cm2,则该扇形的周长是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{x+a}{{{x^2}+3{a^2}}}(a≠0,a∈R)$.
(1)设函数$g(x)=\frac{{{x^2}+12}}{x+2}{e^x}$,当a=-2时,讨论y=f(x)g(x)的单调性,并证明当x>0时,(x-2)ex+x+2>0
(2)求函数f(x)的单调区间;
(3)当a=1时,若对任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)3,x∈R,其中a,b∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2由x=1至x=1+△x的平均变化率的取值范围是(1.975,2.025),则增量△x的取值范围为(  )
A.(-0.025,0.025)B.(0,0.025)C.(0.025,1)D.(-0.025,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点P(-3,-6),求此抛物线的方程.
(Ⅱ)已知圆:x2+y2=c2(c>0),把圆上的各点纵坐标不变,横坐标伸长到原来的$\sqrt{2}$倍得一椭圆.求椭圆方程,并证明椭圆离心率是与c无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中实数c≠0.
(1)求a2,a3,并由此归纳出{an}的通项公式
(2)用数学归纳法证明(Ⅰ)的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3x2+3(1-m2)x,(0<m<1).
(Ⅰ) 求函数f(x)的极大值点和极小值点;
(Ⅱ) 若f(x)恰好有三个零点,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知公差不为0的等差数列{an}的前n项和为Sn,S7=70且a1,a2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{{2{S_n}}}{n}$,求数列$\left\{\frac{1}{{b}_{n}{b}_{n+1}}\right\}前的n$项和Tn

查看答案和解析>>

同步练习册答案