精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=x2由x=1至x=1+△x的平均变化率的取值范围是(1.975,2.025),则增量△x的取值范围为(  )
A.(-0.025,0.025)B.(0,0.025)C.(0.025,1)D.(-0.025,0)

分析 利用平均变化率的意义即可得出.

解答 解∵函数f(x)在区间[1,1+△x]上的增量△y=f(1+△x)-f(1)=(△x+1)2-12=△x2+2△x
∴f(x)在区间[1,1+△x]上上的平均变化率为$\frac{△y}{△x}$=△x+2
∵△x+2∈(1.975,2.025),
∴△x∈(-0.025,0.025),
故选:A.

点评 本题考查了平均变化率的意义及其求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.求值$C_n^{4-n}+C_{n+1}^{9-n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC外接圆的半径为1,圆心为O,$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow 0$,则$\overrightarrow{OC}•\overrightarrow{AB}$=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{(-1)^{n}sin\frac{πx}{2}+2n,x∈[2n,2n+1)}\\{(-1)^{n+1}sin\frac{πx}{2}+2n+2,x∈[2n+1,2n+2)}\end{array}\right.$,n∈N,若数列{an}满足am=f(m)(m∈N*),数列{an}的前m项和为Sm,则S105-S96=(  )
A.909B.910C.911D.912

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某学校高一、高二、高三年级的学生人数之比为2:3:5,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为150的样本,则应从高二年级抽取45名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.平面内一动点M,到两定点F1(-3,0),F2(3,0)的距离之和等于10.
(1)求动点M的轨迹方程;    
(2)判断点$N(3,\frac{16}{5})$是否在曲线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正三棱柱ABC-A1B1C1所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.
(Ⅰ)求证:AE⊥平面A1BD;
(Ⅱ)求二面角D-BA1-A的余弦值;
(Ⅲ)求A1B1与平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员射击一次所得环数X的分布列如下:
X0~678910
P00.20.30.30.2
现进行两次射击,以该运动员两次射击所得的最高环数作为他的成绩,记为ξ.
(1)求该运动员两次都命中7环的概率.
(2)求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=cos(2x-1)的导数为(  )
A.y'=-2sin(2x-1)B.y'=-2cos(2x-1)C.y'=-sin(2x-1)D.y'=-cos(2x-1)

查看答案和解析>>

同步练习册答案