精英家教网 > 高中数学 > 题目详情
16.已知a∈R,解关于x的不等式(a-1)x2+(2a+3)x+a+2<0.

分析 根据题意,讨论a的范围解对应不等式解集的情况,从而写出不等式的解集.

解答 解:当a≠1时,关于x的方程(a-1)x2+(2a+3)x+a+2=0,
△=(2a+3)2-4(a-1)(a+2)=8a+17,
当a>-$\frac{17}{8}$时,关于x的方程有两个不相等的实根x1=$\frac{-(2a+3)+\sqrt{8a+17}}{2(a-1)}$,x2=$\frac{-(2a+3)-\sqrt{3a+17}}{2(a-1)}$
当a=-$\frac{17}{8}$时,方程有两个相等的实根x=-$\frac{1}{5}$;
当a<-$\frac{17}{8}$时,方程没有实根;
∴关于x的不等式(a-1)x2+(2a+3)x+a+2<0的解如下:
当a<-$\frac{17}{8}$时,不等式(a-1)x2+(2a+3)x+a+2<0的解集为R;
当a=-$\frac{17}{8}$时,不等式(a-1)x2+(2a+3)x+a+2<0的解集为{x|x≠-$\frac{1}{5}$};
当1>a>-$\frac{17}{8}$时,不等式(a-1)x2+(2a+3)x+a+2<0的解集为
{x|x>$\frac{-(2a+3)+\sqrt{8a+17}}{2(a-1)}$或x<$\frac{-(2a+3)-\sqrt{3a+17}}{2(a-1)}$};
当a=1时,不等式(a-1)x2+(2a+3)x+a+2<0的解集为{x|x<-$\frac{3}{5}$};
当a>1时,不等式(a-1)x2+(2a+3)x+a+2<0的解集为
{x|$\frac{-(2a+3)-\sqrt{3a+17}}{2(a-1)}$<x<$\frac{-(2a+3)+\sqrt{8a+17}}{2(a-1)}$}.

点评 本题考查了含有字母系数的不等式的解法与应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,a1=1,an+1=Sn+1,等差数列{bn}中,b1=a1,b2=2a2
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点、下顶点分别为M和N,F1和F2是其左、右焦点,椭圆上的点到F2的最小值为1,又cos∠F1MF2的值为-$\frac{7}{25}$.
(1)求椭圆的方程;
(2)若过右焦点F2的直线与该椭圆交于A、B两点(A在第一象限,B在第四象限),且四边形AMNB的面积为$\frac{30(3\sqrt{2}+5)}{17}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x>3,则对于函数f(x)=x+$\frac{4}{x-3}$,下列说法正确的是(  )
A.函数f(x)有最大值7B.函数f(x)有最小值7C.函数f(x)有最小值4D.函数f(x)有最大值4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的首项为32,公比为-$\frac{1}{2}$,则等比数列{an}的前5项和为22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=(2+i)i的虚部是(  )
A.-2B.2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点P(1,$\frac{3}{2}$),其左、右焦点分别为F1,F2,离心率e=$\frac{1}{2}$,M,N是直线x=4上的两个动点,且$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}N}$=0.
(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知b2+c2-a2=S△ABC,则tanA=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=x3+2x2+x+2,过点(-2,m)可作曲线y=f(x)的三条切线,则m的取值范围为(  )
A.(-$\frac{64}{27}$,0)B.(-∞,0)C.(1,$\frac{64}{27}$)D.(-,+∞)

查看答案和解析>>

同步练习册答案