精英家教网 > 高中数学 > 题目详情
11.已知等比数列{an}的首项为32,公比为-$\frac{1}{2}$,则等比数列{an}的前5项和为22.

分析 根据等比数列的求和公式计算即可.

解答 解:等比数列{an}的首项为32,公比为-$\frac{1}{2}$,则等比数列{an}的前5项和为
S5=$\frac{32[1-(-\frac{1}{2})^{5}]}{1+\frac{1}{2}}$=22,
故答案为:22.

点评 本题考查了等比数列的求和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在空间直角坐标系Oxyz中,点A(1,1,1),B(1,1,0),C(0,0,1),则△ABC为(  )
A.直角三角形B.等腰直角三角形C.正三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=$\frac{1}{3}$x3+$\frac{1}{2}(1-a)$x2-ax+$\frac{1}{3}$(a>0),当0≤x≤a时,f(x)的值域为[-$\frac{1}{3}$,$\frac{1}{3}$],则a=(  )
A.2B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=ax(a>0,a≠1)在[-2,1]上的最大值为4,最小值为m,且函数$g(x)=(1-4m)\sqrt{x}$在[0,+∞)上是减函数,则a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是(  )
①若α∥β,m?α,则m∥β;
②若m∥α,n?α,则m∥n;
③若α⊥β,α∩β=n,m⊥n,则m⊥β;
④若n⊥α,n⊥β,m⊥α,则m⊥β.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a∈R,解关于x的不等式(a-1)x2+(2a+3)x+a+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.A为三角形的内角,则sinA$>\frac{1}{2}$是cosA$<\frac{\sqrt{3}}{2}$的(  )条件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①$f(x)=3-\frac{4}{x}$不可能是k型函数;
②若函数$y=\frac{{({a^2}+a)x-1}}{{{a^2}x}}(a≠0)$是1型函数,则n-m的最大值为$\frac{{2\sqrt{3}}}{3}$;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为$\frac{4}{9}$.
④若函数$y=-\frac{1}{2}{x^2}+x$是3型函数,则m=-4,n=0;
其中正确的说法为②④.(填入所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=3sin(x+\frac{π}{3})$的周期、振幅依次是(  )
A.2π,-3B.2π,3C.π,-3D.π,3

查看答案和解析>>

同步练习册答案