精英家教网 > 高中数学 > 题目详情
6.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是(  )
①若α∥β,m?α,则m∥β;
②若m∥α,n?α,则m∥n;
③若α⊥β,α∩β=n,m⊥n,则m⊥β;
④若n⊥α,n⊥β,m⊥α,则m⊥β.
A.①③B.①④C.②③D.②④

分析 在①中,由面面平行的性质定理得m∥β;在②中,m与n平行或异面;在③中,m与β相交、平行或m?β;在④中,由n⊥α,m⊥α,得m∥n,由n⊥β,得m⊥β.

解答 解:由α,β为两个不同的平面,m,n为两条不同的直线,知:
在①中,若α∥β,m?α,则由面面平行的性质定理得m∥β,故①正确;
在②中,若m∥α,n?α,则m与n平行或异面,故②错误;
在③中,若α⊥β,α∩β=n,m⊥n,则m与β相交、平行或m?β,故③错误;
在④中,若n⊥α,m⊥α,则m∥n,
由n⊥β,得m⊥β,故④正确.
故选:B.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知A,B,C是圆O上的三点(点O为圆的圆心),若$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax+(x+1)ln(x+1).
(1)a=0时,求f(x)的单调递减区间;
(2)当a≥-1时,对任意的x≥1,有f(x)≥3成立,求a的取值范围;
(3)讨论函数f(x)正数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.条件p:-2<x<4,条件q:(x+2)(x+a)<0,若?p是?q的必要不充分条件,则a的取值范围是(  )
A.(4,+∞)B.(-∞,-4)C.(-∞,-4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知复数z=1+mi(i是虚数单位,m∈R),且$\overline z•(3+i)$为纯虚数($\overline z$是z的共轭复数).
(Ⅰ)设复数${z_1}=\frac{m+2i}{1-i}$,求|z1|;
(Ⅱ)设复数${z_2}=\frac{{a-{i^{2017}}}}{z}$,且复数z2所对应的点在第四象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的首项为32,公比为-$\frac{1}{2}$,则等比数列{an}的前5项和为22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.把5名人大代表派到3个城市作党的十八大宣讲报告,每个城市至少派一名,则不同的分派方法有(  )
A.150种B.90种C.60种D.180种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.汽车从甲地匀速行驶到乙地运输,汽车速度不得超过80km/h,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的平方成正比,比例系数为0.1;固定部分为160元,为了使全程运输成本最小,汽车的速度为40km/h.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{2π}{3}$,则$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$上的投影是-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案