精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项积为Tn,且Tn=2-2an(n∈N*).
(1)求
1
T1
1
T2
1
T3
,并证明
1
Tn
-
1
Tn-1
=
1
2
(n≥2)

(2)设bn=(1-an)(1-an+1),求数列{bn}的前n项和Sn
(1)令n=1,可得T1=a1=2-2a1可得a1=
2
3
,即T1=  
2
3

令n=2可得T2=2-2a2,即
2
3
a2=2-2a2,解得a2=
3
4
同理可求a3=
4
5

1
T1
=
3
2
1
T2
=2,
1
T3
=
5
2

由题意可得:Tn=2-2
Tn
Tn-1
 ?
Tn•Tn-1=2Tn-1-2Tn(n≥2),
所以
1
Tn
-
1
Tn-1
=
1
2
(n≥2)

(2)数列{
1
Tn
}
为等差数列,
1
Tn
=
n+2
2

当n≥2时,an=
Tn
Tn-1
=
n+1
n+2
,,当n=1时,a1=
2
3
也符合,所以an=
n+1
n+2

bn=
1
(n+2)(n+3)
=
1
n+2
-
1
n+3

sn
1
3×4
+
1
4×5
+…+
1
(n+2)•(n+3)
=
1
3
-
1
4
+
1
4
-
1
5
+…+
1
n+2
-
1
n+3
=
1
3
-
1
n+3
=
n
3n+9
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案