精英家教网 > 高中数学 > 题目详情
已知实数x、y满足
y≤1
y≥|x-1|
,则x+2y的最大值是
 
分析:本题考查的知识点是简单的线性规划,我们可以先画出足约束条件
y≤1
y≥|x-1|
的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出x+2y的最大值.
解答:精英家教网解:已知实数x、y满足
y≤1
y≥|x-1|
在坐标系中画出可行域,
三个顶点分别是A(0,1),B(1,0),C(2,1),
由图可知,当x=2,y=1时
x+2y的最大值是4.
故答案为:4
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x2+(y-3)2的最小值为
16
5
16
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤m
,若目标函数z=x-y的最小值的取值范围是[-3,-2],则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知实数x,y满足
y-x≥1
x+y≤1
-2x+y≤2
,则当z=3x-y取得最小值时(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足y=x2-2x+2(-1≤x≤1),则
y+3
x+2
的最大值与最小值的和为
28
3
28
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤1
y≥|x-1|
,则3x-y的最大值是
5
5

查看答案和解析>>

同步练习册答案