精英家教网 > 高中数学 > 题目详情
8.若0<a<2,则$\frac{1}{a}$的取值范围($\frac{1}{2}$,+∞).

分析 构造关于a的函数,则y=$\frac{1}{a}$在(0,2)上为减函数,根据函数的单调性即可求出a的范围.

解答 解:∵y=$\frac{1}{a}$在(0,2)上为减函数,
∴$\frac{1}{a}$的范围为($\frac{1}{2}$,+∞),
故答案为:($\frac{1}{2}$,+∞)

点评 本题考查了幂函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个圆锥的正(主)视图及其尺寸如图所示,则该圆锥的侧面积是(  )
A.$\frac{15}{2}π$B.12πC.15πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求曲线C的直角坐标方程;
(2)若点D在曲线C上,求它到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t为参数,t∈R)的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x2-ax+lnx在其定义域上不单调,则实数a的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E,已知AC=BD=3.
(Ⅰ)求AB•AD的值;
(Ⅱ)求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b,c>d,则不等式一定成立的是(  )
A.a-c>b-dB.a+c>b+dC.ac>bdD.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{2}{x}$-2+2alnx.
(1)当a=1时,求函数f(x)在区间[$\frac{1}{2}$,2]上的最值;
(2)若f(x)>-2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,a1=3,an=$\sqrt{{a}_{n-1}+2}$.
(Ⅰ)求a2,a3
(Ⅱ)求证:数列{an}单调递减;
(Ⅲ)求证:|an-2|<$\frac{1}{4}$|an-1-2|(n=2,3,…).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果ξ~B(n,p),其中0<p<1,那么使P(ξ=k)取最大值的k 值(  )
A.有且只有一个B.有且只有两个
C.不一定有D.当(n+1)p为整数时有两个

查看答案和解析>>

同步练习册答案