分析 (I)利用圆的切线的性质得∠CAB=∠ADB,∠ACB=∠DAB,从而有△ACB∽△DAB,$\frac{AC}{AD}$=$\frac{AB}{BD}$,由此得到所证.
(II)利用圆的切线的性质得∠AED=∠BAD,又∠ADE=∠BDA,可得△EAD∽△ABD,$\frac{AE}{AB}$=$\frac{AD}{BD}$,即AE•BD=AB•AD,再结合(I)的结论AC•BD=AD•AB 可得,AC=AE.
解答 解:(Ⅰ)∵AC切⊙O′于A,∴∠CAB=∠ADB,
同理∠ACB=∠DAB,∴△ACB∽△DAB,
∴$\frac{AC}{AD}$=$\frac{AB}{BD}$,即AC•BD=AB•AD.
∵AC=BD=3,∴AB•AD=9.…5分
(Ⅱ)∵AD切⊙O于A,∴∠AED=∠BAD,
又∠ADE=∠BDA,∴△EAD∽△ABD,
∴$\frac{AE}{AB}$=$\frac{AD}{BD}$,即AE•BD=AB•AD.
由(Ⅰ)可知,AC•BD=AB•AD,
∴AE=AC=3.…10分.
点评 本题主要考查圆的切线的性质,利用两个三角形相似得到成比列线段是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | $\frac{4\sqrt{3}}{3}$ | C. | 8$\sqrt{3}$ | D. | $\frac{8\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com