【题目】某足球俱乐部对“一线队引援”和“青训”投入分别规划如下:2018年,该俱乐部在“一线队引援”投入资金为16000万元,“青训”投入资金为1000万元.计划每年“一线队引援”投入比上一年减少一半,“青训”投入比上一年增加一倍.
(1)请问哪一年该俱乐部“一线队引援”和“青训”投入总和最少?
(2)从2018年起(包括2018年)该俱乐部从哪一年开始“一线队引援”和“青训”总投入之和不低于62000万元?(总投入是指各年投入之和)
【答案】(1)2020年,投入总和最少;(2)2022年开始,总投入之和不低于62000万.
【解析】
(1)从2018年算起,设第n年“一线队引援”投入资金为an,“青训”投入资金为bn,投入总和为cn,写出数列{cn}的通项公式,利用基本不等式即可得出结论;
(2)根据等比数列的求和公式得出前n年的总投入之和,列不等式解出n即可.
(1)从2018年算起,设第n年“一线队引援”投入资金为an,
“青训”投入资金为bn,投入总和为cn,
则{an}是以16000为首项,以
为公比的等比数列,
{bn}是以1000为首项,以2为公比的等比数列,
,
,
,
当且仅当
,即
时取等号,
所以2020年,该俱乐部“一线队引援”和“青训”投入总和最少;
(2)设{cn}的前项和为Tn,
则
,
令
,
令
,则
,解得
,
(舍去),
即
,
,
所以从2018年算起的第5年即2022年开始,“一线队引援”和“青训”总投入之和不低于62000万.
科目:高中数学 来源: 题型:
【题目】某工厂生产的产品
的直径均位于区间
内(单位:
).若生产一件产品
的直径位于区间
内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品
中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
![]()
(1)求
的值,并估计该厂生产一件
产品的平均利润;
(2)现用分层抽样法从直径位于区间
内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间
内的槪率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P到直线y=﹣4的距离比点P到点A(0,1)的距离多3.
(1)求点P的轨迹方程;
(2)经过点Q(0,2)的动直线l与点P的轨交于M,N两点,是否存在定点R使得∠MRQ=∠NRQ?若存在,求出点R的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校进行社会实践,对
岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在
岁,
岁年龄段人数中,“时尚族”人数分别占本组人数的
、
.
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在
岁内的概率。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次田径比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。
![]()
若将运动员按成绩由好到差编为1—35号,再用系统抽样方法从中抽取5人,则其中成绩在区间
上的运动员人数为
A.6B.5C.4D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了
年下半年该市
名农民工(其中技术工、非技术工各
名)的月工资,得到这
名农民工月工资的中位数为
百元(假设这
名农民工的月工资均在
(百元)内)且月工资收入在
(百元)内的人数为
,并根据调查结果画出如图所示的频率分布直方图:
![]()
(Ⅰ)求
,
的值;
(Ⅱ)已知这
名农民工中月工资高于平均数的技术工有
名,非技术工有
名,则能否在犯错误的概率不超过
的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com