精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a2x
,g(x)=x+lnx,其中a>0.
(I)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;
(Ⅱ)若对任意的x1∈[1,e],都存在x2∈[1,e](其中为e自然对数的底数)使得f(x1)<g(x2)成立,求实数a的取值范围.
分析:(Ⅰ)由h(x)=2x+
a2
x
+lnx
,其定义域为(0,+∞),知h′(x)=2-
a2
x2
+
1
x
x∈(0,+∞)
,由x=1是函数h(x)的极值点,知3-a2=0,由此能求出a.
(Ⅱ)对任意的x1∈[1,e],都存在x2∈[1,e]使得f(x1)<g(x2)成立等价于f(x)max<g(x)max.当x∈[1,e]时,g′(x)=1+
1
x
>0
,故函数g(x)=x+lnx在[1,e]上是增函数,g(x)max=g(e)=e+1.由此能求出a的取值范围.
解答:解:(Ⅰ)∵h(x)=2x+
a2
x
+lnx
,其定义域为(0,+∞),…(1分)
h′(x)=2-
a2
x2
+
1
x
x∈(0,+∞)
…(2分)
∵x=1是函数h(x)的极值点,
∴h'(1)=0,即3-a2=0
∵a>0,∴a=
3
.                                          …(4分)
经检验当a=
3
时,x=1是函数h(x)的极值点,
a=
3
…(5分)
(Ⅱ)对任意的x1∈[1,e],都存在x2∈[1,e]使得f(x1)<g(x2
成立等价于f(x)max<g(x)max…(6分)
当x∈[1,e]时,g′(x)=1+
1
x
>0

∴函数g(x)=x+lnx在[1,e]上是增函数,
∴g(x)max=g(e)=e+1…(7分)
f′(x)=1-
a2
x2
=
(x+a)(x-a)
x2
,x∈[1,e],a>0
①当0<a≤1时,x∈[1,e],f′(x)=
(x+a)(x-a)
x2
≥0

∴函数f(x)=x+
a2
x
在[1,e]上是增函数,
f(x)max=f(e)=e+
a2
e
e+
a2
e
<e+1
即f(x)max<g(x)max恒成立,满足题意;       …(9分)
②当1<a<e时,若1≤x<a,则f′(x)=
(x+a)(x-a)
x2
<0

若a<x≤e,则f′(x)=
(x+a)(x-a)
x2
>0

∴函数f(x)=x+
a2
x
在[1,a)上是减函数,在(a,e]上是增函数,
而f(1)=1+a2f(e)=e+
a2
e

a)f(1)<f(e)即1<a<
e
时,
f(x)max=f(e)=e+
a2
e
e+
a2
e
<e+1
即f(x)max<g(x)max恒成立;
b)f(1)≥f(e)即
e
≤a≤e
时,
f(x)max=f(1)=1+a2
此时,f(x)max≥g(x)max,不合题意;               …(12分)
③当a≥e时,x∈[1,e],f′(x)=
(x+a)(x-a)
x2
≤0

∴函数f(x)=x+
a2
x
在[1,e]上是减函数,
∴f(x)max=f(1)=1+a2
此时,f(x)max>g(x)max,不合题意;                    …(13分)
综上知,a的取值范围为(0,
e
)
.                             …(14分)
点评:本题考查利用导数求函数最的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案