精英家教网 > 高中数学 > 题目详情
15.已知f(x)=$\left\{\begin{array}{l}{3{x}^{2}+ln(\sqrt{1+{x}^{2}}+x),x≥0}\\{3{x}^{2}+ln(\sqrt{1+{x}^{2}}-x),x<0}\end{array}\right.$,若f(x-1)<f(2x+1),则x的取值范围为{x|x>0,或x<-2 }.

分析 由题意可得f(x)为偶函数,f(x)在[0,+∞)上单调递增.由不等式f(x-1)<f(2x+1),可得|x-1|<|2x+1|,由此求得x的范围.

解答 解:∵已知f(x)=$\left\{\begin{array}{l}{3{x}^{2}+ln(\sqrt{1+{x}^{2}}+x),x≥0}\\{3{x}^{2}+ln(\sqrt{1+{x}^{2}}-x),x<0}\end{array}\right.$,
∴满足f(-x)=f(x),且f(0)=0,故f(x)为偶函数,
f(x)在[0,+∞)上单调递增.
若f(x-1)<f(2x+1),则|x-1|<|2x+1|,
∴(x-1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<-2,
故答案为:{x|x>0,或x<-2}.

点评 本题主要考查函数的奇偶性和单调性的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O-ABC的高为2,点D是线段BC的中点,过点D作球O的截面,则截面积的最小值为(  )
A.$\frac{15π}{4}$B.C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=x2+(2a+1)x,g(x)=ax.
(1)解关于x的不等式:f(x)≤g(x);
(2)若不等式|f(x)|≥g(x)对任意实数x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面区域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$内随机取一点(a,b),则函数f(x)=ax2-4bx+1在区间[1,+∞)上是增函数的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列选项中,说法正确的个数是(  )
(1)命题“?x0∈R,x${\;}_{0}^{2}$-x0≤0”的否定为“?x∈R,x2-x>0”;
(2)命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题;
(3)若统计数据x1,x2,…,xn的方差为1,则2x1,2x2,…,2xn的方差为2;
(4)若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足条件$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,则$z=\frac{y}{x+1}$的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(x+y+z)4的展开式共(  )项.
A.10B.15C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b为非零实数,且a>b,则下列结论一定成立的是(  )
A.a3>b3B.a2>b2C.$\frac{1}{a}$<$\frac{1}{b}$D.ac2>bc2

查看答案和解析>>

同步练习册答案