精英家教网 > 高中数学 > 题目详情
15.已知集合M={x|x≥-1},N={x|-2<x<2},则M∩N=(  )
A.(-∞,-1]B.[-1,2)C.(-1,2]D.(2,+∞)

分析 先分别求出集合M,N,由此利用交集定义能求出M∩N.

解答 解:∵集合M={x|x≥-1},N={x|-2<x<2},
∴M∩N={x|-1≤x<2}=[-1,2).
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知变量x,y呈现线性相关关系,回归方程为$\widehat{y}$=1-2x,则变量x,y是(  )
A.线性正相关关系
B.由回归方程无法判断其正负相关关系
C.线性负相关关系
D.不存在线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$a=\frac{2}{5}$,$b={2^{\frac{1}{2}}}$,$c=log_3^{\frac{1}{2}}$,则(  )
A.b>c>aB.c>b>aC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设数列{an}是单调递增的等差数列,a1=2且a1-1,a3,a5+5成等比数列,则a2017=(  )
A.1008B.1010C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市公租房的房源位于A,B,C,D四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:
(1)求恰有1人申请A片区房源的概率;
(2)用x表示选择A片区的人数,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了迎接一年一度的元宵节,某商场大楼安装了5个彩灯,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且只有一个彩灯闪亮,且相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是(  )
A.1190秒B.1195秒C.1200秒D.1205秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,则乙、丙都不与甲相邻出场的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.我们可以利用数列{an}的递推公式an=$\left\{\begin{array}{l}{n,n为奇数时}\\{\frac{{a}_{n}}{2},n为偶数时}\end{array}\right.$(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=66.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=alnx-bx2
(1)当b=1时,讨论函数f(x)的单调性;   
(2)当a=1,b=0时,函数g(x)=f(x)-kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:x1•x2>e2

查看答案和解析>>

同步练习册答案