精英家教网 > 高中数学 > 题目详情
已知椭圆中心在原点,对称轴为坐标轴,两焦点为F1(3,0),F2(-3,0),且椭圆上一点P到两焦点的距离之和为10,求椭圆的标准方程.
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:利用椭圆的简单性质求解.
解答: 解:∵椭圆中心在原点,对称轴为坐标轴,
两焦点为F1(3,0),F2(-3,0),
且椭圆上一点P到两焦点的距离之和为10,
∴设椭圆方程为
x2
a2
+
y2
b2
=1
,a>b>0
且2a=5,c=3,
解得a=3,b2=25-9=16,
∴椭圆的标准方程为
x2
25
+
y2
16
=1
点评:本题考查椭圆的方程的求法,解题时要认真审题,注意椭圆的简单性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆锥母线长为6,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,半径OC与母线PB所成的角的大小等于60°.
(1)求圆锥的侧面积和体积.
(2)求异面直线MC与PO所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

扇形AOB中心角为60°,所在圆半径为
3
,它按如下(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
(Ⅰ)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设∠EOB=θ;
(Ⅱ)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设∠EOM=φ;
试研究(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1,平面A1ABB1⊥平面ABC,AA1=AB=2,∠A1AB=60°,AC=BC=
2
.O,E分别是AB,CC1中点.
(Ⅰ)求证:OE∥平面A1C1B;
(Ⅱ)求三棱锥B-A1AC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ.
(Ⅰ)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(Ⅱ)求ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x•ekx(k≠0)((ekx)′=kekx
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一条曲线C在y轴右边,C上每一点到点F(
1
2
,0)的距离减去它到y轴距离的差都是
1
2

(1)求曲线C的方程;
(2)P是曲线C上的动点,点B,C在y轴上,圆(x-1)2+y2=1内切于△PBC,求△PBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由资料可知y对x呈线性相关关系(
n
i=1
xi2=90,
n
i=1
xiyi=112.3)
(1)画出x与y的散点图;
(2)试求x与y线性回归方程;
(3)估计使用年限为10年时,维修费用大约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线L经过抛物线E:y=
1
4p
x2(P>0)的焦点F,直线L与抛物线E在第二象限的交点为A,与抛物线E只有一个公共点A的直线经过点(2-2
2
,0),则P=
 

查看答案和解析>>

同步练习册答案