精英家教网 > 高中数学 > 题目详情
21、(1)设f(x)=|lgx|,若0<a<b且f(a)>f(b)证明:a•b<1
(2)设0<x<1  a>0且a≠1求比较|loga(1-x)|和|loga(1+x)|的大小.
分析:(1)由绝对值得意义,去绝对值进行讨论得出ab的关系即可.
(2)可用做差比较法,分a>1和0<a<1两种情况,真数值和1的大小进行比较即可.
解答:解:(1)由题意|lga|>|lgb|,因为0<a<b,所以
①1≤a<b时,由y=lgx在(0,+∞)上单调递增,所以0≤lga<lgb,所以|lga|<|lgb|,不合要求
②0<a<1<b时,lga<0,lgb>0,由|lga|>|lgb|,得-lga>lgb,即lga+lgb=lgab<0,所以ab<1.
(2)因为0<x<1,所以1-x∈(0,1),1+x∈(1,2)
①a>1时,loga(1-x)<0,loga(1+x)>0,
所以|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x)(1+x),
因为(1-x)(1+x)=1-x2∈(0,1),所以-loga(1-x)(1+x)>0,
所以|loga(1-x)|>|loga(1+x)|
②0<a<1时,loga(1-x)>0,loga(1+x)<0,
所以|loga(1-x)|-|loga(1+x)|=loga(1-x)+loga(1+x)=loga(1-x)(1+x)>0,
所以|loga(1-x)|>|loga(1+x)|
综上所述:|loga(1-x)|>|loga(1+x)|
点评:解:本题考查绝对值得意义、对数的取值和运算、比较大小等知识,考查运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
 

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设f(x)是定义在R上奇函数,且当x>0时,f(x)=2x-3,则当x<0时,f(x)表达式为
 

(2)设f(x)是定义在R上奇函数,且f(x+1)=-f(x),当x∈(0,1)时,f(x)=2x-3,则x∈(3,4)时,f(x)表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设f(x)=x2-x-3,求集合A与B;
(2)设f(x)=x2-(2a-1)x+a2(常数a∈R),求证:A=B.
(3)猜测集合A与B的关系并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=4|x|3-2a|x|.
(1)设f(x)图象在点(-1,f(-1))处的切线方程是2x+y+b=0,求b的值.
(2)是否存在实数a,使得函数在[-1,1]内的最小值为-2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+
1f(x)
,讨论F (x)的单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案