精英家教网 > 高中数学 > 题目详情

【题目】如图是一几何体的平面展开图,其中为正方形,分别为的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面;其中正确的是_____.

【答案】②③

【解析】

对①,根据三角形的中位线定理可得四边形是平面四边形,直线与直线共面;对②,由异面直线的定义即可得出;对③,由线面平行的判定定理即可得出;对④,可举出反例

由展开图恢复原几何体如图所示:

对①,在中,由,根据三角形的中位线定理可得

,因此四边形是梯形,故直线与直线不是异面直线,故①不正确;

对②,由点不在平面内,直线不经过点,根据异面直线的定义可知:直线与直线异面,故②正确;

对③,由①可知:平面平面直线平面,故③正确;

对④,如图:假设平面平面.过点分别交于点,在上取一点,连接,又.若时,必然平面与平面不垂直.故④不一定成立.

综上可知:只有②③正确.

故答案为:②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,已知

1)若函数,求的值;

2)当时,求证:函数上是单调递增函数;

3)若对于一切,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

1)求的值;

2)判断并证明函数的单调性;

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数上的有界函数,其中称为函数的上界.已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x,且此函数图象过点(12).

1)求实数m的值;

2)判断函数fx)的奇偶性并证明;

3)讨论函数fx)在(01)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若始终存在实数,使得函数的零点不唯一,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一点关于直线的对称点仍在圆上,直线截得圆的弦长为.

(1)求圆的方程;

(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.

查看答案和解析>>

同步练习册答案