精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

【答案】(Ⅰ) ;(Ⅱ)证明见解析.

【解析】

试题分析:

()由题意结合点到直线距离公式可得.结合离心率计算公式有.则椭圆的方程为.

()对直线的斜率分类讨论:当直线的斜率不存在时,.当直线的斜率存在时,设联立直线方程与椭圆方程有由弦长公式可得.联立直线与椭圆方程,结合弦长公式有.计算可得.据此可得:为定值.

试题解析:

Ⅰ)依题意,原点到直线的距离为

则有.

,得.

∴椭圆的方程为.

Ⅱ)证明:(1)当直线的斜率不存在时,易求

.

(2)当直线的斜率存在时,

设直线的斜率为,依题意

则直线的方程为,直线的方程为.

.

整理得,则.

.

.

综合(1)(2),为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:①;②函数是偶函数;③任取一个不为零的有理数对任意的恒成立;④存在三个点,使得为等边三角形.其中真命题的个数有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆)的圆心为点直线

(1)若求直线被圆所截得弦长的最大值

(2)若直线是圆心下方的切线上变化时的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=Acos(ωxφ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:

(1)函数f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中为正方形,分别为的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面;其中正确的是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数, 是数列的前项和,且.

1)求数列的通项公式;

2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在本市某旧小区改造工程中,需要在地下铺设天燃气管道.已知小区某处三幢房屋分别位于扇形的三个顶点上,点是弧的中点,现欲在线段上找一处开挖工作坑(不与点重合),为铺设三条地下天燃气管线,已知米,,记,该三条地下天燃气管线的总长度为米.

(1)将表示成的函数,并写出的范围;

(2)请确定工作坑的位置,使此处地下天燃气管线的总长度最小,并求出总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.

(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;

(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,

(1)证明:平面

(2)证明:

(3)求点到平面的距离.

查看答案和解析>>

同步练习册答案