【题目】(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.
(1)证明:平面;
(2)证明:;
(3)求点到平面的距离.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
试题分析:(1)由四边形是长方形可证,进而可证平面;(2)先证,再证平面,进而可证;(3)取的中点,连结和,先证平面,再设点到平面的距离为,利用可得的值,进而可得点到平面的距离.
试题解析:(1)因为四边形是长方形,所以,因为平面,平面,所以平面
(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以
(3)取的中点,连结和,因为,所以,在中,
,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的
中点.
(1) 求证: AC⊥BC1
(2) 求证:AC1∥平面CDB1
(3) 求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆上一点关于直线的对称点仍在圆上,直线截得圆的弦长为.
(1)求圆的方程;
(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是( )
A.AC⊥SB
B.BC∥平面SAD
C.SA和SC与平面SBD所成的角相等
D.异面直线AB与SC所成的角和异面直线CD与SA所成的角相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野五项运动.规定每一项运动的前三名得分都分别为,,(,且),每位选手各项得分之和为最终得分.在一次比赛中,只有甲、乙、丙三人参加“现代五项”,甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名.则:__________,游泳比赛的第三名是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为元.
(Ⅰ)将全程运输成本(元)表示为速度()的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,货车应以多大的速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点与两个定点,的距离的比为.
(1)求动点的轨迹的方程;
(2)过点的直线与曲线交于、两点,求线段长度的最小值;
(3)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com