精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,

(1)证明:平面

(2)证明:

(3)求点到平面的距离.

【答案】(1)证明见解析;(2)证明见解析;(3)

【解析】

试题分析:(1)由四边形是长方形可证,进而可证平面;(2)先证,再证平面,进而可证;(3)取的中点,连结,先证平面,再设点到平面的距离为,利用可得的值,进而可得点到平面的距离.

试题解析:(1)因为四边形是长方形,所以,因为平面平面,所以平面

(2)因为四边形是长方形,所以,因为平面平面,平面平面平面,所以平面,因为平面,所以

(3)取的中点,连结,因为,所以,在中,

,因为平面平面,平面平面平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域为,函数.

1)求

2)求函数的值域;

3)当时,若函数有零点,求的取值范围,并讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一点关于直线的对称点仍在圆上,直线截得圆的弦长为.

(1)求圆的方程;

(2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面为正方形,SD⊥底面ABCD,则下列结论中,错误的是(   )

A.ACSB

B.BC∥平面SAD

C.SASC与平面SBD所成的角相等

D.异面直线ABSC所成的角和异面直线CDSA所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野五项运动.规定每一项运动的前三名得分都分别为,且),每位选手各项得分之和为最终得分.在一次比赛中,只有甲、乙、丙三人参加“现代五项”,甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名.则:__________,游泳比赛的第三名是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为元.

)将全程运输成本(元)表示为速度)的函数,并指出这个函数的定义域;

)为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点与两个定点的距离的比为.

(1)求动点的轨迹的方程;

(2)过点的直线与曲线交于两点,求线段长度的最小值;

(3)已知圆的圆心为,且圆轴相切,若圆与曲线有公共点,求实数的取值范围.

查看答案和解析>>

同步练习册答案