考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得a3n-2+a3n-1+a3n=2an-1+an+2+2n-3an=2n+1,a1=2a1-1,由数列的周期性推导出a100=2A34-1=-31,由此得S100=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+…+(a97+a98+a99)+a100,从而能求出结果.
解答:
解:∵数列{a
n}满足:a
3n-2=2a
n-1,a
3n-1=a
n+2,a
3n=2n-3a
n,
∴a
3n-2+a
3n-1+a
3n=2a
n-1+a
n+2+2n-3a
n=2n+1,
a
1=2a
1-1,解得a
1=1,a
2=a
1+2=3,
a
4=2a
2-1=5,
a
12=8-3a
4=8-15=-7,
a
34=2a
12-1=-15,
a
100=2A
34-1=-31,
∴S
100=(a
1+a
2+a
3)+(a
4+a
5+a
6)+(a
7+a
8+a
9)+…+(a
97+a
98+a
99)+a
100=2(1+2+3+…+33)+33-31
=2×
-64
=1124.
故答案为:1124.
点评:本题考查数列的前100项和的求法,是中档题,解题时要认真审题,注意数列的周期性的合理运用.