分析 (1)利用向量平行的坐标运算得到关于三角形内角的三角函数式,结合三角恒等变换得到关于A 的余弦值求得A.
(2)运用向量等式得到D为三角形的重心,以AB、AC为邻边作平行四边形ABEC,通过解三角形解答.
解答 解:(1)因为$\overrightarrow m$=(2b,1),$\overrightarrow n$=(ccosA+acosC,cosA),且$\overrightarrow m$∥$\overrightarrow n$.
所以ccosA+acosC=2bcosA,由正弦定理得到sinCcosA+sinAcosC=2sinBcosA,所以sin(A+C)
=sinB=2sinBcosA,所以cosA=$\frac{1}{2}$,A∈(0,π)所以A=$\frac{π}{3}$.…(6分)
(2)又因为$\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AD}$,则D为△ABC的重心,以AB、AC为邻边作平行四边形ABEC,因为AD=2,
所以AE=6,在△ABE中,$AB=\sqrt{3}$,∠ABE=120°.
由正弦定理可得$\frac{{\sqrt{3}}}{sin∠AEB}=\frac{6}{{\frac{{\sqrt{3}}}{2}}}$,解得$sin∠AEB=\frac{1}{4}$且$cos∠AEB=\frac{{\sqrt{15}}}{4}$.
因此sin∠BAD=sin($\frac{π}{3}$-∠BAD)=$\frac{\sqrt{3}}{2}×\frac{\sqrt{15}}{4}-\frac{1}{2}×\frac{1}{4}=\frac{3\sqrt{5}-1}{8}$.…(12分)
点评 本题考查了向量平行的坐标运算以及三角恒等变形和解三角形;属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,1) | B. | ($\frac{1}{3}$,$\frac{1}{2}$) | C. | ($\frac{1}{3}$,$\frac{5}{8}$) | D. | ($\frac{5}{8}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $a+\frac{1}{a}$的最小值是2 | B. | ${a^2}+\frac{1}{a^2}$的最小值是2 | ||
| C. | $a+\frac{1}{a}$的最大值是2 | D. | ${a^2}+\frac{1}{a^2}$的最大值是2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com