精英家教网 > 高中数学 > 题目详情
已知是不重合的直线,是不重合的平面,有下列命题:
①若,则
②若,则
③若,则
④若,则
其中真命题的个数是(   )
A.0B.1C.2D.3
B

试题分析:①若,则平行或异面,故不正确;②若,则可能相交或平行,故不正确;③若,则也可能在平面内,故不正确;④若,则,垂直与同一直线的两平面平行,故正确,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,四边形为正方形,四边形是直角梯形,平面

(1)求证:平面
(2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,,,求:

(1)异面直线所成角的余弦值;
(2)直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在等腰直角三角形中, =900 ="6," 分别是上的点,  的中点.将沿折起,得到如图所示的四棱椎,其中

(1)证明:
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.

(1)求证:PB∥平面EFH;
(2)求证:PD⊥平面AHF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥SABC中,SA⊥平面ABC,SA=AB=AC=BC,点D是BC边的中点,点E是线段AD上一点,且AE=3DE,点M是线段SD上一点,
 
(1)求证:BC⊥AM;
(2)若AM⊥平面SBC,求证:EM∥平面ABS.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面,直线,则“”是“”的(   )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案