精英家教网 > 高中数学 > 题目详情
已知函数y=Asin(ωx+φ)(A,ω>0,0<φ<
π
2
)的图形的一个最高点为(2,
2
),由这个最高点到相邻的最低点时曲线经过(6,0),求这个函数的解析式.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
解答: 解:由题意可知:A=
2
T
4
=6-2
,即T=16.
由周期公式可得到:T=
|ω|
=16
,又∵ω>0,∴ω=
π
8
,∴y=
2
sin(
π
8
x+φ)

又函数图象过点(2,
2
)
,∴
2
=
2
sin(
π
8
×2+φ)
,即sin(
π
4
+φ)=1

又∵0<φ<
π
2
,∴φ=
π
4

所以函数解析式是:y=
2
sin(
π
8
x+
π
4
)
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
(1)求证:平面CDE⊥平面ABC
(2)若AB=DC=3,BC=5,BD=4,求几何体ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中:
(1)若A+B=
π
4
,求(1+tanA)(1+tanB)的值.
(2)若lgtanA+lgtanC=2lgtanB,求证:
π
3
≤B<
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+x)2eax(a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若存在实数a<0,使得f(x)≤kx+k对任意的x∈[-1,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=1,
a
b
=1.
(1)求|
a
+
b
|的值;   
(2)若k
a
+
b
a
-3
b
垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱锥的三视图如图1所示,正视图和侧视图都是腰长为1的等腰直角三角形,俯视图是边长为1的正方形.
(Ⅰ)用图2虚线围成的图形作为该棱锥的底面画出该棱锥的直观图(要求使用直尺和铅笔,看不到的线画成虚线,看得到的线画成实线,图形摆放方位与三视图一致,不要求写出作图步骤);
(Ⅱ)求该棱锥的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边长分别为a,b,c,若b2+c2=a2+
2
bc
(1)求A的大小;
(2)求2cosBsinC+sin(A+2C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:平面CFB1⊥平面EFB1
(Ⅱ)若求三棱锥B1-EFC的体积为1,求此正方体的棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex+e-x的导函数为
 

查看答案和解析>>

同步练习册答案