| 日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
| 温差x/℃ | 10 | 11 | 13 | 12 | 8 |
| 发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
分析 (Ⅰ)用数组(m,n)表示选出2天的发芽情况,用列举法可得m,n的所有取值情况,分析可得m,n均不小于25的情况数目,由古典概型公式,计算可得答案;
(Ⅱ)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.
解答 解:(Ⅰ)用数组(m,n)表示选出2天的发芽情况,
m,n的所有取值情况有:
(23,25),(23,30),(23,26),(23,16),(25,30),
(25,26),(25,16),(30,26),(30,16),(30,26),共有10个
设“m,n均不小于25”为事件A,
则包含的基本事件有(25,30),(25,26),(30,26)
所以P(A)=$\frac{3}{10}$,
故m,n均不小于25的概率为$\frac{3}{10}$;
(Ⅱ)由数据得$\overline{x}$=12,$\overline{y}$=27,3$\overline{x}$•$\overline{y}$=972,$\sum _{i=1}^{3}$xiyi=977,$\sum _{i=1}^{3}$xi2=434,3$\overline{x}$2=432.
由公式,得$\hat{b}$=$\frac{977-972}{434-432}$=$\frac{5}{2}$,$\hat{a}$=27-$\frac{5}{2}$×12=-3.
所以y关于x的线性回归方程为$\hat{y}$=$\frac{5}{2}$x-3.
点评 本题考查回归直线方程的计算与应用,涉及古典概型的计算,是基础题,在计算线性回归方程时计算量较大,注意正确计算.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则存在唯一实数λ使$\overrightarrow{a}$=λ$\overrightarrow{b}$ | |
| B. | “若θ=$\frac{π}{3}$,则cosθ=$\frac{1}{2}$”的否命题为“若θ≠$\frac{π}{3}$,则cosθ≠$\frac{1}{2}$” | |
| C. | 已知向量$\overrightarrow{a}$、$\overrightarrow{b}$为非零向量,则“$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为钝角”的充要条件是“$\overrightarrow{a}$$•\overrightarrow{b}$<0” | |
| D. | 若命题p:?x∈R,x2-x+1<0,则¬p:?x∈R,x2-x+1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p∨q是假命题 | B. | 命题p∧q是真命题 | ||
| C. | 命题p∧(¬q)是真命题 | D. | 命题p∨(¬q)是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 3 | D. | 0或3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com