精英家教网 > 高中数学 > 题目详情
8.从1,2,4,8这4个数中一次随机地取两个数,则所取两个数的乘积为8的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 首先列举并求出“从1,2,4,8这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为8”的事件的个数,利用概率公式计算即可.

解答 解:从1,2,4,8这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,4),(1,8),(2,4),(2,8),(4,8)共6个,
所取2个数的乘积为8的基本事件有(1,8),(2,4)共2个,
故所求概率P=$\frac{2}{6}$=$\frac{1}{3}$.
故选:C.

点评 本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设m=3${∫}_{-1}^{1}$(x2+sinx)dx,则二项式(x+$\frac{1}{m\sqrt{x}}$)6展开式的常数项为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{a+4i}{1+ai}$,a>0,且z=$\overline{z}$,若1+ai是关于x的方程x2+bx+c=0的一根,则b,c分别为(  )
A.4,-8B.2,-5C.-4,8D.-2,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)计算f(2)+f($\frac{1}{2}$)、f(-5)+f(-$\frac{1}{5}$)、f($\sqrt{2}$)+f($\frac{\sqrt{2}}{2}$)的值;
(2)根据(1)中的计算结果,归纳猜想关于函数y=f(x)的一般性结论,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4名优秀学生全部保送到3所学校去,每所学校至少去一名学生,则不同的保送方案有(  )
A.12种B.72种C.18种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算22+42+62+…+1002的算法的程序框图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a=${2}^{\frac{1}{3}}$,b=${3}^{\frac{1}{3}}$,将a,b用“<”连接为a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{1-{2}^{x}}$+log3(2x+1)的定义域为(-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:
日期4月1日4月7日4月15日4月21日4月30日
温差x/℃101113128
发芽数y/颗2325302616
(Ⅰ)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{b}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案