精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x3+x2单调递减区间是[-$\frac{2}{3}$,0].

分析 根据f(x)的导函数建立不等关系,可得f'(0)≤0,建立不等量关系,求出单调递减区间即可.

解答 解:∵f′(x)=3x2+2x,
∴3x2+2x≤0,
解得-$\frac{2}{3}$≤x≤0,
∴函数f(x)=x3+x2单调递减区间是[-$\frac{2}{3}$,0],
故答案为:[-$\frac{2}{3}$,0].

点评 本小题主要考查运用导数研究函数的单调性等基础知识,考查分析和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数y=sinx(x∈[0,π])图象上两个点A(x1,y1),B(x2,y2)(x1<x2)满足AB∥x轴,点C的坐标为(π,0),则四边形OABC的面积取最大值时,x1+tanx1=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=x-\frac{a}{x}$,g(x)=2ln(x+m).
(1)当m=0,存在x0∈[$\frac{1}{e}$,e](e为自然对数的底数),使$f({x_0})≥\frac{{g({x_0})}}{x_0}$,求实数a的取值范围;
(2)当a=m=1时,设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1>x2>-1),使得H(x1)-H(x2)=$H'(\frac{{{x_1}+{x_2}}}{2})•({x_1}-{x_2})$?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,$g(x)=\frac{a}{x}(a>0)$,F(x)=f(x)+g(x).
(1)若函数F(x)在区间[1,e]上的最小值是$\frac{3}{2}$,求a的值;
(2)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,直线AB的斜率为k,且a=1,求证:$k>g(\frac{{{x_1}+{x_2}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知圆$C:{(x+\sqrt{3})^2}+{y^2}=8,A(\sqrt{3},0)$,Q是圆上一动点,AQ的垂直平分线交直线CQ于点M,设点M的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)过点A作倾斜角为$\frac{π}{4}$的直线l交轨迹E于B,D两点,求|BD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax+1nx(a∈R),g(x)=ex
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当a=0时,g(x)>f(x)+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ex-e-x-2x,下列结论正确的是(  )
A.f(2x)min=f(0)B.f(2x)max=f(0)
C.f(2x)在(-∞,+∞)上递减,无极值D.f(2x)在(-∞,+∞)上递增,无极值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在四面体P-ABC的四个面中,是直角三角形的面至多有(  )个.
A.0个B.1个C.3个D.4个

查看答案和解析>>

同步练习册答案