已知双曲线
-
=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )
(A)2
(B)2
(C)4
(D)4![]()
科目:高中数学 来源: 题型:
如图所示,中心均为原点O的双曲线与椭圆有公共焦点,M、N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )
![]()
(A)3 (B)2 (C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C1:
+
=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.
![]()
(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.
![]()
(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
某校要从高一、高二、高三共2 012名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2 012人中剔除12人,剩下的2 000人再按分层抽样的方法进行,则每人入选的概率( )
A.都相等且为
B.都相等且为![]()
C.不会相等 D.均不相等
查看答案和解析>>
科目:高中数学 来源: 题型:
现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7 527 0 293 7 140 9 857 0 347 4 373 8 636 6 947
1 417 4 698 0 371 6 233 2 616 8 045 6 011 3 661
9 597 7 424 7 610 4 281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为 ( )
A.0.852 B.0.819 2 C.0.8 D.0.75
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com