精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-3ax2+3bx
(1)若a=1,b=0,求f'(2)的值;
(2)若f(x)的图象与直线12x+y-1=0相切于点(1,-11),求a,b的值;
(3)在(2)的条件下,求函数f(x)的单调区间.

解:(1)求导数得f'(x)=3x2-6ax+3b,…(3分)
当a=1,b=0时,f'(x)=3x2-6x=3x(x-2),
∴f'(2)=0…(4分)
(2)由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),
所以…(6分)
,解得a=1,b=-3…(9分)
(3)由a=1,b=-3得:f'(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3)…(10分)
由f'(x)>0,解得x<-1或x>3;由f'(x)<0,解得-1<x<3.--------------------(13分)
故函数f(x)在区间(-∞,-1),(3,+∞)上单调递增,在区间(-1,3)上单调递减.---(14分)
分析:(1)求导数,代入相应的值,可得f'(2)的值;
(2)利用f(x)的图象与直线12x+y-1=0相切于点(1,-11),建立方程组,即可求a,b的值;
(3)利用导数的正负,即可求得函数f(x)的单调区间.
点评:本小题主要考查导数、函数解析式、函数极值、函数的单调性、单调区间等知识,考查待定系数、化归与转化数学思想方法,综合运用能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案