精英家教网 > 高中数学 > 题目详情
设函数,的导函数为,且,则下列不等式成立的是(注:e为自然对数的底数)(     )
A.B.
C.D.
B

试题分析:根据题意,由于函数,是偶函数,且可知 则说明函数在定义域内递减,当x>0时,则可知当x=1时f(1)<e•f(0)且有成立故可知答案为B
点评:主要是考查了导数在研究函数单调性中的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设,试讨论单调性;
(2)设,当时,若,存在,使,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)若处取得极值,
①求的值;②存在,使得不等式成立,求的最小值;
(II)当时,若上是单调函数,求的取值范围.(参考数据

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上是单调函数,则实数的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知实数a满足1<a≤2,设函数f (x)=x3x2+a x.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于或等于10.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在R上可导,且,则的大小关系是(     )
A.B.
C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

题文已知函数.
(1)求函数的单调递减区间;
(2)若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

满足仅在点处取得最小值,则的取值范围是(   )
A.(-1,2)B.(-2,4) C.(-4,0]D.(-4,2)

查看答案和解析>>

同步练习册答案