精英家教网 > 高中数学 > 题目详情
设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值
(I).(II) 。(Ⅲ)

试题分析:(I).
因为曲线与曲线在它们的交点处具有公共切线,所以,且,即,且,
解得.
(II)记,当时,,
,令,得.
变化时,的变化情况如下表:








0

0



极大值

极小值

所以函数的单调递增区间为;单调递减区间为,
①当时,即时,在区间上单调递增,所以在区间上的最大值为;
②当,即时,在区间上单调递增,在区间上单调递减,所以在区间上的最大值为
,即时,t+3<2且h(2)=h(-1),所以在区间上的最大值为

点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)当时,求的单调区间;
(Ⅱ)若函数上无零点,求最小值;
(Ⅲ)若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,的导函数为,且,则下列不等式成立的是(注:e为自然对数的底数)(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上的最大值与最小值分别为,则___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数轴切于点,且极小值为,则(  )
A.12B.13C.15D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数.
(1)若的两个极值点为,且,求实数的值;
(2)是否存在实数,使得上的单调函数?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,若,则的值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)求的极值;
(2)若上为单调递增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围。

查看答案和解析>>

同步练习册答案