精英家教网 > 高中数学 > 题目详情

某班共有学生40人,将以此数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.

(1)请根据图中所给的数据,求a的值;
(2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(3)为了了解学生这次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.

(1)(2)(3)

解析试题分析:
(1)频率分布直方图的纵坐标为频率与组距之比,故可以求的每组的频率,根据每个组的概率之和为1可以求的a的值.
(2)从频率分布直方图中可以得到[50,70)被分为两组[50,60)与[60,70)和两组的频率,频率乘以总数40人就可以得到各组的人数,在两组中无序的抽3人可以用组合数算得总的基本事件数,再用组合数可以求的在[60,70)内抽取3人的基本事件数,再利用古典概型的概率计算公式,即可得到该事件的概率.
(3)由第二问可知X的可能取值为1,2,3,再采用与第二问相同的方法可以算的X取1,2,3时,的概率得到分布列,进而得到期望.
试题解析:
(1)根据频率分布直方图中的数据,可得

所以.        2分
(2)学生成绩在内的共有40×0.05=2人,在内的共有40×0.225=9人,
成绩在内的学生共有11人.        4分
设“从成绩在的学生中随机选3名,且他们的成绩都在内”为事件A,

所以选取的3名学生成绩都在内的概率为.       6分
(3)依题意,的可能取值是1,2,3.        7分


.        10分
所以的分布列为


1
2
3




.        12分
考点:古典概型分布列期望频率分布直方图

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.
(1)估计所抽取的数学成绩的众数;
(2)用分层抽样的方法在成绩为这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.

组号
分组
频数
频率
第一组



第二组



第三组



第四组



第五组



合计


(1)求的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:

年龄/周岁
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年龄/周岁
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?
(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?
(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?
(4)计算残差,说明该函数模型是否能够较好地反映年龄与身高的关系,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下所示:

 
又发作过心脏病
未发作过心脏病
合计
心脏搭桥手术
39
157
196
血管清障手术
29
167
196
合计
68
324
392
比较这两种手术对病人又发作心脏病的影响有没有差别.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中以表示.

(1)如果乙组同学投篮命中次数的平均数为,求及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为17的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线
性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)




频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

研究性学习小组为了解某生活小区居民用水量(吨)与气温(℃)之间的关系,随机统计并制作了5天该小区居民用水量与当天气温的对应表:

日期
9月5日
10月3日
10月8日
11月16日
12月21日
气温(℃)
18
15
11
9
-3
用水量(吨)
57
46
36
37
24
(1)若从这随机统计的5天中任取2天,求这2天中有且只有1天用水量低于40吨的概率(列出所有的基本事件);
(2)由表中数据求得线性回归方程中的,试求出的值,并预测当地气温为5℃时,该生活小区的用水量.

查看答案和解析>>

同步练习册答案