精英家教网 > 高中数学 > 题目详情

【题目】在平面上给定相异两点AB,设P点在同一平面上且满足,当时,P点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有双曲线),AB为双曲线的左、右顶点,CD为双曲线的虚轴端点,动点P满足面积的最大值为面积的最小值为4,则双曲线的离心率为______.

【答案】

【解析】

根据为双曲线的左、右顶点可设,,,由两点间距离公式并化简可得动点的轨迹方程.为双曲线的左、右顶点可知当位于圆的最高点时的面积最大,根据面积最大值求得.位于圆的最左端时的面积最小,结合最小面积可求得,即可求得双曲线的离心率.

,,,

依题意,,

,

两边平方化简得,则圆心为,半径,

位于圆的最高点时的面积最大,最大面积为,

解得

位于圆的最左端时的面积最小,最小面积为,

解得,

故双曲线的离心率为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某圆的极坐标方程为

(1)圆的普通方程和参数方程

(2)圆上所有点的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,

方案一:每满200元减50元;

方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

红球个数

3

2

1

0

实际付款

半价

7折

8折

原价

(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;

(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知中心在坐标原点O的椭圆C经过点A23),且点F2.0)为其右焦点.

)求椭圆C的方程;

)是否存在平行于OA的直线L,使得直线L与椭圆C有公共点,且直线OAL的距离等于4?若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).

根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差 ()具有线性相关关系.

(1)求绿豆种子出芽数 (颗)关于温差 ()的回归方程

(2)假如4月1日至7日的日温差的平均值为11,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=a-x2-2ax+lnxaR

(1)当a=1时,求fx)在区间[1e]上的最大值和最小值;

(2)求gx=fx+axx=1处的切线方程;

(3)若在区间(1+∞)上,fx)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题表示双曲线,命题表示椭圆

若命题为真命题,求实数的取值范围.

判断命题为真命题是命题为真命题的什么条件(请用简要过程说明是充分不必要条件必要不充分条件充要条件 既不充分也不必要条件中的哪一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案