精英家教网 > 高中数学 > 题目详情
15.设集合A={-1,1,2},B={a+1,a2-2},若A∩B={-1,2},则a的值为(  )
A.-2或1B.0或1C.-2或-1D.0或-2

分析 由交集定义得到$\left\{\begin{array}{l}{a+1=-1}\\{{a}^{2}-2=2}\end{array}\right.$或$\left\{\begin{array}{l}{a+1=2}\\{{a}^{2}-2=-1}\end{array}\right.$,由此能求出a的值.

解答 解:∵集合A={-1,1,2},B={a+1,a2-2},A∩B={-1,2},
∴$\left\{\begin{array}{l}{a+1=-1}\\{{a}^{2}-2=2}\end{array}\right.$或$\left\{\begin{array}{l}{a+1=2}\\{{a}^{2}-2=-1}\end{array}\right.$,
解得a=-2或a=1.
故选:A.

点评 本题考查a的值的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且a1=2,an+1=Sn,n∈N*
(1)写出数列{an}的第5项a5=16;
(2)已知等差数列{bn}中,有b2=a1,b3=a3,设cn=$\frac{b_n}{a_n}$,记数列{cn}的前n项和为Tn,求证:Tn<4(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线y=3x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有公共点,则双曲线的离心率的取值范围为(  )
A.$(1,\sqrt{10})$B.$(\sqrt{10},+∞)$C.$({1,\sqrt{10}}]$D.$[{\sqrt{10}}\right.,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$,且x1+x2+x3+…+x100=1,则lg(x101+x102+…+x200)=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在平行四边形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],则$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范围是(  )
A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当a$<\frac{1}{2}$时,关于x的不等式(ex-a)x-ex+2a<0的解集中有且只有两个整数值,则实数a的取值范围是[$\frac{3}{{4e}^{2}}$,$\frac{2}{3e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用X表示未来3天内日销售量不低于8吨的天数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是①④(填上所有正确命题的序号).
①若α∥β,m?α,则m∥β;                
②若m∥α,n?α,则m∥n;
③若α⊥β,α∩β=n,m⊥n,则m⊥β;       
④若n⊥α,n⊥β,m⊥α,则m⊥β.

查看答案和解析>>

同步练习册答案