精英家教网 > 高中数学 > 题目详情
10.已知数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$,且x1+x2+x3+…+x100=1,则lg(x101+x102+…+x200)=100.

分析 法一:由已知得$\frac{{x}_{n+1}}{{x}_{n}}=10$,${x}_{1}=\frac{9}{1{0}^{100}-1}$,从而得到x101+x102+…+x200=10100,由此能求出lg(x101+x102+…+x200).
法二:由已知得$\frac{{x}_{n+1}}{{x}_{n}}=10$,从而利用等比数列的性质,可知,x101+x102+…+x200=10100(x1+x2+x3+…+x100)=10100,由此能求出lg(x101+x102+…+x200).

解答 解法一:∵数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$=lg(10xn),
∴$\frac{{x}_{n+1}}{{x}_{n}}=10$,
∵x1+x2+x3+…+x100=1,
∴$\frac{{x}_{1}(1-1{0}^{100})}{1-10}$=1,∴${x}_{1}=\frac{9}{1{0}^{100}-1}$,
${x}_{101}=\frac{9}{1{0}^{100}-1}×1{0}^{100}$,
∴x101+x102+…+x200=$\frac{\frac{9}{1{0}^{100}-1}×1{0}^{100}(1-1{0}^{100})}{1-10}$=10100
则lg(x101+x102+…+x200)=lg10100=100.
故答案为:100.
解法二:∵数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$=lg(10xn),
∴$\frac{{x}_{n+1}}{{x}_{n}}=10$,
∵x1+x2+x3+…+x100=1,
∴等比数列的性质,可知,x101+x102+…+x200=10100(x1+x2+x3+…+x100)=10100
∴lg(x101+x102+…+x200)=lg10100=100.
故答案为:100.

点评 本题考查对数值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.2017年1月25日智能共享单车项目摩拜单车正式登陆济南,两种车型采用分段计费的方式,Mobike  Lite型(Lite版)和经典版每30分钟收0.5元(不足30分钟的部分按30分钟计算).有甲、乙、丙三人相互对立的到租车点租车骑行(各租一车一次).设甲、乙、丙不超过30分钟还车的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,三人租车时间都不会超过60分钟,甲、乙均租用Lite版单车,丙租用经典版单车.
(1)求甲、乙两人所付的费用之和等于丙所付的费用的概率;
(2)设甲、乙、丙三人所付费用之和为随机变量ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2,点M在PD上.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)若BM与平面ABCD所成角的正切值为$\frac{{\sqrt{26}}}{26}$,求四棱锥M-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正整数m的3次幂有如下分解规律:13=1;23=3+5;33=7+9+11;        43=13+15+17+19;…若m3(m∈N+)的分解中最小的数为91,则m的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知对任意实数x.都有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(-x)>0,则x<0时有(  )
A.f′(x)>0,g′(-x)>0B.f′(x)>0,g′(-x)<0C.f′(x)<0,g′(-x)>0D.f′(x)<0,g′(-x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={-1,1,2},B={a+1,a2-2},若A∩B={-1,2},则a的值为(  )
A.-2或1B.0或1C.-2或-1D.0或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数$\frac{1+2i}{1+i}$=a+bi,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\vec a,\vec b$均为单位向量,且$(2\vec a+\vec b)•(\vec a-2\vec b)=-\frac{{3\sqrt{3}}}{2}$,则向量$\vec a,\vec b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{9π}{2}$的同一球面上,则PA的长为(  )
A.3B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案