| A. | 3 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
分析 连结AC、BD,交于点E,则E是AC中点,取PC中点O,连结OE,推导出O是该四棱锥的外接的球心,可得球半径,由四棱锥的所有顶点都在体积为$\frac{9π}{2}$,建立方程求出PA即可.
解答
解:连结AC,BD交于点E,取PC的中点O,连结OE,则OE∥PA,所以OE⊥底面ABCD,则O到四棱锥的所有顶点的距离相等,即O球心,均为$\frac{1}{2}PC$=$\frac{1}{2}\sqrt{P{A}^{2}+8}$,
所以由球的体积可得$\frac{4}{3}π•(\frac{1}{2}\sqrt{P{A}^{2}+8})^{3}$=$\frac{9π}{2}$,解得PA=1,
故选:C.
点评 本题考查四面体的外接球的体积,考查勾股定理的运用,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{37}}}{2}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | $\frac{{\sqrt{37}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9+\sqrt{3}}{6}$π | B. | $\frac{6+\sqrt{3}}{6}$π | C. | $\frac{3+\sqrt{3}}{6}$π | D. | $\frac{12+\sqrt{3}}{6}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{17}{7}$ | C. | $\frac{7}{3}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧(¬q) | B. | (¬p)∧q | C. | p∧q | D. | (¬p)∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com