精英家教网 > 高中数学 > 题目详情
20.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{9π}{2}$的同一球面上,则PA的长为(  )
A.3B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 连结AC、BD,交于点E,则E是AC中点,取PC中点O,连结OE,推导出O是该四棱锥的外接的球心,可得球半径,由四棱锥的所有顶点都在体积为$\frac{9π}{2}$,建立方程求出PA即可.

解答 解:连结AC,BD交于点E,取PC的中点O,连结OE,则OE∥PA,所以OE⊥底面ABCD,则O到四棱锥的所有顶点的距离相等,即O球心,均为$\frac{1}{2}PC$=$\frac{1}{2}\sqrt{P{A}^{2}+8}$,
所以由球的体积可得$\frac{4}{3}π•(\frac{1}{2}\sqrt{P{A}^{2}+8})^{3}$=$\frac{9π}{2}$,解得PA=1,
故选:C.

点评 本题考查四面体的外接球的体积,考查勾股定理的运用,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}({n∈{N^*}})$,且x1+x2+x3+…+x100=1,则lg(x101+x102+…+x200)=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数z1=a+i(a∈R),z2=1-i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则z1在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q两点,且PQ⊥PF1,若$|PQ|=\frac{5}{12}|P{F_1}|$,则双曲线离心率e为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{37}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{37}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{9+\sqrt{3}}{6}$πB.$\frac{6+\sqrt{3}}{6}$πC.$\frac{3+\sqrt{3}}{6}$πD.$\frac{12+\sqrt{3}}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是①④(填上所有正确命题的序号).
①若α∥β,m?α,则m∥β;                
②若m∥α,n?α,则m∥n;
③若α⊥β,α∩β=n,m⊥n,则m⊥β;       
④若n⊥α,n⊥β,m⊥α,则m⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,输出的结果是(  )
A.3B.$\frac{17}{7}$C.$\frac{7}{3}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设命题p:?x0∈(0,+∞),x0+$\frac{1}{{x}_{0}}$>3;命题q:?x∈(2,+∞),x2>2x,则下列命题为真的是(  )
A.p∧(¬q)B.(¬p)∧qC.p∧qD.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出如下四个命题:①e${\;}^{\frac{2}{e}}$>2②ln2>$\frac{2}{3}$③π2<3π④$\frac{ln2}{2}$<$\frac{lnπ}{π}$,正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案